Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nutrients ; 12(8)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32717880

ABSTRACT

Cowpea (Vigna unguiculata) is among the most cultivated legumes, with interesting agronomic and environmental properties, and great potential as a nutritious food. The nutritional value of cowpea can be improved by technological processing. In this study, we showed that natural fermentation improved bioavailability of protein, amino acids, and dietary essential minerals from cowpea in growing rats, thus strengthening its potential value as functional food or food supplement. Forty Wistar albino rats (48 ± 1.8 g), were fed one of four experimental diets (n = 10 rats per diet): casein, raw cowpea, fermented cowpea or fermented and autoclaved cowpea. Despite lower growth indices of raw and fermented cowpea protein (PER, FTI) than casein, fermentation enhanced apparent digestibility of arginine, leucine, lysine, methionine, phenylalanine, tyrosine, and valine, and true digestibility of essential amino acids, except for tyrosine and valine, compared to raw cowpea. On the other hand, autoclaving of fermented cowpea flour decreased apparent, as did true digestibility of sulfur amino acids. Regarding the nutritive utilization of dietary essential minerals, Vigna unguiculata was a good source of available P, Mg, and K, while fermentation significantly improved the availability of P. Overall, cowpea was a good source of digestible essential amino acids and minerals and fermentation significantly improved its nutritional value that was not further enhanced by autoclaving.


Subject(s)
Amino Acids, Essential/analysis , Fermentation , Flour/analysis , Phosphorus/analysis , Vigna/chemistry , Amino Acids/analysis , Animal Feed , Animals , Diet , Female , Functional Food , Male , Nutritive Value , Rats , Rats, Wistar , Vigna/microbiology
2.
Sci Rep ; 9(1): 12666, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477738

ABSTRACT

Bambara groundnut (Vigna subterranea L. Verdc.) is an indigenous, drought-tolerant, underutilized African food legume, with the ability to fix atmospheric N2 in symbiosis with soil bacteria called rhizobia. The aim of this study was to assess the morpho-physiological, symbiotic and phylogenetic characteristics of rhizobia nodulating Bambara groundnut in Ghana, Mali and South Africa. The morpho-physiologically diverse isolates tested were also found to exhibit differences in functional efficiency and phylogenetic positions. Based on Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR banding patterns, the isolates were grouped into eight major clusters. The concentrations of Ca, Na and K in soils had a significant (p ≤ 0.01) effect on the distribution of rhizobia. Though many isolates were symbiotically very effective, the effectiveness index varied markedly (p ≤ 0.05) among them. Moreover, the isolates also exhibited tolerance to a wide range of NaCl (0.5-7%), streptomycin (50-500 µg.ml-1), and kanamycin (25-150 µg.ml-1) concentrations. Additionally, these isolates could produce 0.02 to 69.71 µg.ml-1 of indole-3-acetic acid (IAA) in tryptophan-supplemented medium, as well as solubilize tri-calcium phosphate. Phylogenetic analysis of these rhizobial isolates using 16S rRNA, atpD, glnII, gyrB, recA and symbiotic (nifH and nodC) gene sequences revealed distinct and novel evolutionary lineages related to the genus Bradyrhizobium, with some of them being very close to Bradyrhizobium vignae, B. kavangense, B. subterraneum, B. elkanii and B. pachyrhizi.


Subject(s)
Adaptation, Physiological , Phylogeny , Rhizobium/physiology , Symbiosis , Vigna/microbiology , Drug Resistance, Microbial , Genes, Bacterial , Genes, Essential , Geography , Phenotype , Phosphates/metabolism , Photosynthesis , Plant Root Nodulation , RNA, Ribosomal, 16S/genetics , Regression Analysis , Rhizobium/genetics , Rhizobium/isolation & purification , Root Nodules, Plant/microbiology , Salinity , Soil/chemistry , Solubility , South Africa , Vigna/anatomy & histology , Vigna/growth & development
3.
Braz J Microbiol ; 50(3): 777-789, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31177380

ABSTRACT

Nine bacterial strains were previously isolated in association with pinewood nematode (PWN) from wilted pine trees. They proved to be nematicidal in vitro, and one of the highest activities, with potential to control PWN, was showed by Serratia sp. M24T3. Its ecology in association with plants remains unclear. This study aimed to evaluate the ability of strain M24T3 to colonize the internal tissues of the model plant Arabidopsis thaliana using confocal microscopy. Plant growth-promoting bacteria (PGPB) functional traits were tested and retrieved in the genome of strain M24T3. In greenhouse conditions, the bacterial effects of all nematicidal strains were also evaluated, co-inoculated or not with Bradyrhizobium sp. 3267, on Vigna unguiculata fitness. Inoculation of strain M24T3 increased the number of A. thaliana lateral roots and the confocal analysis confirmed effective bacterial colonization in the plant. Strain M24T3 showed cellulolytic activity, siderophores production, phosphate and zinc solubilization ability, and indole acetic acid production independent of supplementation with L-tryptophan. In the genome of strain M24T3, genes involved in the interaction with the plants such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinolytic activity, and quorum sensing were also detected. The genomic organization showed ACC deaminase and its leucine-responsive transcriptional regulator, and the activity of ACC deaminase was 594.6 nmol α-ketobutyrate µg protein-1 µl-1. Strain M24T3 in co-inoculation with Bradyrhizobium sp. 3267 promoted the growth of V. unguiculata. In conclusion, this study demonstrated the ability of strain M24T3 to colonize other plants besides pine trees as an endophyte and displays PGPB traits that probably increased plant tolerance to stresses.


Subject(s)
Arabidopsis/microbiology , Nematoda/microbiology , Serratia/physiology , Animals , Antibiosis , Arabidopsis/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Pinus/parasitology , Plant Diseases/parasitology , Plant Roots/growth & development , Plant Roots/microbiology , Quorum Sensing , Serratia/enzymology , Serratia/genetics , Serratia/isolation & purification , Vigna/growth & development , Vigna/microbiology
4.
World J Microbiol Biotechnol ; 35(6): 83, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31134356

ABSTRACT

Bacterial metabolites have been observed to be important in new drug formulation for both plant, animals and human beings. The aim of this study was to identify the different bioactive compounds found in three rhizobacterial isolates (B. amyloliquefaciens, B. thuringiensis and Bacillus sp.) from the rhizosphere of Bambara groundnut and to assay for their antibacterial properties. Gas chromatography mass spectrometry (GC-MS) was used to carry out the analysis using seven extraction solvents. In the GC-MS analysis, 68 compounds were identified based on peak area percentage, retention time and structure. From the bioactive compounds in B. amyloliquefaciens and B. thuringiensis, the peak area percentage shows that dimethylfuvene from ethyl acetate extraction had the highest relative abundance with 89.11% while Formic acid 2-methylpropyl ester from hexane extraction had the lowest with 6.25%. Others are tridecane, acetic acid butyl ester, paraldehyde, s-(+)-1,2 propanediol, tropone, phthalan and p-xylene with relative abundance of 61.72%, 60.41%, 83.79%, 71.53%, 24.06%, 86.72% and 64.33% respectively. These extracts inhibited the growth of the four test organisms, Bacillus cereus, Pseudomonas aeruginosa, Micrococcus cryophilus and Enterococcus feacalis. Butanol extract from B. amyloliquefaciens had 28 mm zone of inhibition against B. cereus compared to 18 mm and 16 mm by Bacillus sp. and B. thuringiensis respectively. Its zone of inhibition was 24 mm zone against M. cryophilus compared to 12 mm and 19 mm by Bacillus sp. and B. thuringiensis respectively. Butanol extract from B. thuringiensis suppressed E. feacalis and P. aeruginosa having 23 mm and 26 mm zones of inhibition respectively. This was higher compared to Bacillus sp. and B. amyloliquefaciens having 18 mm/15 mm and 21 mm/15 mm against E. feacalis and P. aeruginosa respectively. Hexane and ethyl acetate extract from Bacillus sp. suppressed P. aeruginosa with 12 mm and 17 mm inhibition zones respectively compared to no inhibition zones from hexane extract of B. amyloliquefaciens and B. thuringiensis. Zones of inhibition of 2 mm and 6 mm were observed against P. aeruginosa from ethyl acetate extract of B. amyloliquefaciens and B. thuringiensis respectively. These results suggest that the three isolates are quite rich in the production of bioactive compounds that are also very effective antibacterial agents. These volatile organic compounds are promising compounds for more antibacterial bioactivity development.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Gas Chromatography-Mass Spectrometry/methods , Rhizobium/metabolism , Vigna/microbiology , Volatile Organic Compounds/analysis , Bacillus/classification , Bacillus/genetics , Bacillus/isolation & purification , Bacillus/metabolism , Bacillus cereus/drug effects , DNA, Ribosomal/genetics , Enterococcus faecalis/drug effects , Fusarium/drug effects , Micrococcus/drug effects , Plant Extracts/chemistry , Pseudomonas aeruginosa/drug effects , Soil Microbiology , South Africa , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/pharmacology
5.
An. acad. bras. ciênc ; 90(1): 357-371, Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-886906

ABSTRACT

ABSTRACT Arbuscular mycorrhizal fungi provide several ecosystem services, including increase in plant growth and nutrition. The occurrence, richness, and structure of arbuscular mycorrhizal fungi communities are influenced by human activities, which may affect the functional benefits of these components of the soil biota. In this study, 13 arbuscular mycorrhizal fungi isolates originating from soils with different land uses in the Alto Solimões-Amazon region were evaluated regarding their effect on growth, nutrition, and cowpea yield in controlled conditions using two soils. Comparisons with reference isolates and a mixture of isolates were also performed. Fungal isolates exhibited a wide variability associated with colonization, sporulation, production of aboveground biomass, nitrogen and phosphorus uptake, and grain yield, indicating high functional diversity within and among fungal species. A generalized effect of isolates in promoting phosphorus uptake, increase in biomass, and cowpea yield was observed in both soils. The isolates of Glomus were the most efficient and are promising isolates for practical inoculation programs. No relationship was found between the origin of fungal isolate (i.e. land use) and their symbiotic performance in cowpea.


Subject(s)
Soil/chemistry , Soil Microbiology , Symbiosis/physiology , Mycorrhizae/isolation & purification , Mycorrhizae/physiology , Vigna/growth & development , Phosphorus/analysis , Time Factors , Brazil , Plant Roots/microbiology , Biodiversity , Vigna/microbiology , Nitrogen/analysis
6.
An Acad Bras Cienc ; 90(1): 357-371, 2018.
Article in English | MEDLINE | ID: mdl-29424389

ABSTRACT

Arbuscular mycorrhizal fungi provide several ecosystem services, including increase in plant growth and nutrition. The occurrence, richness, and structure of arbuscular mycorrhizal fungi communities are influenced by human activities, which may affect the functional benefits of these components of the soil biota. In this study, 13 arbuscular mycorrhizal fungi isolates originating from soils with different land uses in the Alto Solimões-Amazon region were evaluated regarding their effect on growth, nutrition, and cowpea yield in controlled conditions using two soils. Comparisons with reference isolates and a mixture of isolates were also performed. Fungal isolates exhibited a wide variability associated with colonization, sporulation, production of aboveground biomass, nitrogen and phosphorus uptake, and grain yield, indicating high functional diversity within and among fungal species. A generalized effect of isolates in promoting phosphorus uptake, increase in biomass, and cowpea yield was observed in both soils. The isolates of Glomus were the most efficient and are promising isolates for practical inoculation programs. No relationship was found between the origin of fungal isolate (i.e. land use) and their symbiotic performance in cowpea.


Subject(s)
Mycorrhizae/isolation & purification , Mycorrhizae/physiology , Soil Microbiology , Soil/chemistry , Symbiosis/physiology , Vigna/growth & development , Vigna/microbiology , Biodiversity , Brazil , Nitrogen/analysis , Phosphorus/analysis , Plant Roots/microbiology , Time Factors
7.
J Sci Food Agric ; 98(7): 2770-2776, 2018 May.
Article in English | MEDLINE | ID: mdl-29119563

ABSTRACT

BACKGROUND: Mung bean is a rich source of protein, carbohydrates and fiber content. It also exhibits a high level of antioxidant activity due to the presence of phenolic compounds. Aspergillus flavus and A. niger are the two major fungal strains associated with stored mung bean that lead to post-harvest losses of grains and also cause serious health risks to human beings. Thus there is a need to explore an economical decontamination method that can be used without affecting the biochemical parameters of grains. RESULTS: It was observed that infrared (IR) treatment of mung bean surface up to 70 °C for 5 min at an intensity of 0.299 kW m-2 led to complete visible inhibition of fungal growth. Scanning electron microscopy revealed that surface irregularities and physical disruption of spores coat are the major reasons behind the inactivation of IR-treated fungal spores. It was also reported that IR treatment up to 70 °C for 5 min does not cause any negative impact on the biochemical and physical properties of mung bean. CONCLUSION: From the results of the present study, it was concluded that IR treatment at 70 °C for 5 min using an IR source having an intensity of 0.299 kW m-2 can be successfully used as a method of fungal decontamination. The fungal spore population was reduced (approximately 5.3 log10 CFU g-1 reductions) without significantly altering the biochemical and physical properties of grains. © 2017 Society of Chemical Industry.


Subject(s)
Aspergillus flavus/radiation effects , Aspergillus niger/radiation effects , Food Contamination/prevention & control , Food Irradiation/methods , Plant Diseases/microbiology , Vigna/microbiology , Aspergillus flavus/growth & development , Aspergillus niger/growth & development , Infrared Rays , Seeds/microbiology , Seeds/radiation effects , Spores, Fungal/growth & development , Spores, Fungal/radiation effects , Vigna/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL