Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Science ; 364(6438): 399-402, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31023926

ABSTRACT

The maintenance of terminally differentiated cells, especially hepatocytes, in vitro has proven challenging. Here we demonstrated the long-term in vitro maintenance of primary human hepatocytes (PHHs) by modulating cell signaling pathways with a combination of five chemicals (5C). 5C-cultured PHHs showed global gene expression profiles and hepatocyte-specific functions resembling those of freshly isolated counterparts. Furthermore, these cells efficiently recapitulated the entire course of hepatitis B virus (HBV) infection over 4 weeks with the production of infectious viral particles and formation of HBV covalently closed circular DNA. Our study demonstrates that, with a chemical approach, functional maintenance of PHHs supports long-term HBV infection in vitro, providing an efficient platform for investigating HBV cell biology and antiviral drug screening.


Subject(s)
Hepatitis B virus/growth & development , Hepatocytes/physiology , Hepatocytes/virology , Primary Cell Culture/methods , Virus Cultivation/methods , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , DNA, Circular/biosynthesis , DNA, Circular/isolation & purification , DNA, Viral/biosynthesis , DNA, Viral/isolation & purification , Drug Evaluation, Preclinical , Hepatitis B virus/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Transcriptome , Virion/drug effects , Virion/growth & development
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1041-1056, 2018 09.
Article in English | MEDLINE | ID: mdl-29885363

ABSTRACT

The hepatitis C virus (HCV) life cycle is tightly linked to the host cell lipid metabolism with the endoplasmic reticulum-derived membranous web harboring viral RNA replication complexes and lipid droplets as virion assembly sites. To investigate HCV-induced changes in the lipid composition, we performed quantitative shotgun lipidomic studies of whole cell extracts and subcellular compartments. Our results indicate that HCV infection reduces the ratio of neutral to membrane lipids. While the amount of neutral lipids and lipid droplet morphology were unchanged, membrane lipids, especially cholesterol and phospholipids, accumulated in the microsomal fraction in HCV-infected cells. In addition, HCV-infected cells had a higher relative abundance of phosphatidylcholines and triglycerides with longer fatty acyl chains and a strikingly increased utilization of C18 fatty acids, most prominently oleic acid (FA [18:1]). Accordingly, depletion of fatty acid elongases and desaturases impaired HCV replication. Moreover, the analysis of free fatty acids revealed increased levels of polyunsaturated fatty acids (PUFAs) caused by HCV infection. Interestingly, inhibition of the PUFA synthesis pathway via knockdown of the rate-limiting Δ6-desaturase enzyme or by treatment with a high dose of a small-molecule inhibitor impaired viral progeny production, indicating that elevated PUFAs are needed for virion morphogenesis. In contrast, pretreatment with low inhibitor concentrations promoted HCV translation and/or early RNA replication. Taken together our results demonstrate the complex remodeling of the host cell lipid metabolism induced by HCV to enhance both virus replication and progeny production.


Subject(s)
Hepacivirus/metabolism , Hepatocytes/metabolism , Host-Pathogen Interactions , Lipid Metabolism/genetics , Metabolome , Virion/metabolism , Virus Replication/physiology , Acetyltransferases/antagonists & inhibitors , Acetyltransferases/genetics , Acetyltransferases/metabolism , Cell Line, Tumor , Cholesterol/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Fatty Acid Desaturases/antagonists & inhibitors , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases , Fatty Acids, Unsaturated/metabolism , Gene Expression Regulation , Hepacivirus/growth & development , Hepatocytes/chemistry , Hepatocytes/virology , Humans , Lipid Droplets/metabolism , Lipid Droplets/virology , Microsomes/metabolism , Microsomes/virology , Oleic Acid/metabolism , Phosphatidylcholines/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Triglycerides/metabolism , Virion/growth & development , Virus Assembly/physiology
3.
Mol Plant Microbe Interact ; 20(2): 194-206, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17313170

ABSTRACT

Spinach curly top virus (SCTV), the fifth characterized Curtovirus species belonging to the family Geminiviridae, is an agriculturally significant plant pathogen representing an emerging disease threat in the southern United States. The SCTV genome comprises a single DNA chromosome of approximately 3.0 kb, with the potential to code for seven proteins larger than 10 kDa but which relies extensively on the host for replication and transcription of its genome. In this study, we have identified viral and complementary sense transcripts in SCTV-infected plants, confirming a bidirectional transcription strategy for SCTV. The most abundant RNA maps to the virion sense (1.1-kb transcript) and is comparable in size and location to that observed in Beet curly top virus (BCTV). Two complementary sense transcripts (1.7 and 0.7 kb) were identified in SCTV-infected plants. The large, 1.7-kb transcript is comparable in size and position to that identified in BCTV and several begomoviruses and most likely encodes the C1 protein. Both complementary sense RNAs could potentially direct expression of C2 and C3 from polycistronic mRNAs. A mutation in the C2 gene of SCTV results in expression of a truncated protein of 38 amino acids that is capable of interacting with two cellular kinases, AKIN11 and ADK2, and the resulting mutant virus remains highly infectious. A second mutant virus can only express the first three amino acids of the C2 protein and is unable to interact with the same kinases. However, this mutant virus still remains infectious, although a reduction in infectivity and symptom severity was seen in both Arabidopsis and spinach. A possible relationship between the interaction of C2 with AKIN11 and ADK2 and disease severity is presented.


Subject(s)
Geminiviridae/genetics , Genome, Viral/genetics , Virion/genetics , Arabidopsis/virology , Base Sequence , Beta vulgaris/virology , Geminiviridae/growth & development , Gene Expression Regulation, Viral , Models, Genetic , Molecular Sequence Data , Open Reading Frames/genetics , Plant Leaves/virology , Spinacia oleracea/virology , Nicotiana/virology , Transcription, Genetic , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/growth & development
4.
Biotechnol Bioeng ; 84(2): 245-53, 2003 Oct 20.
Article in English | MEDLINE | ID: mdl-12966582

ABSTRACT

The baculovirus insect cell expression system (BEVS) was used for the production of self-forming Porcine parvovirus-like particles (VLPs) in serum-free medium. A low multiplicity of infection (MOI) strategy was used to overcome an extra virus amplification step, undesirable in industrial production, and to minimize the virus passage effect. It was confirmed that the time of infection (TOI) and MOI are dependent variables. Higher cell densities were obtained at low MOIs, keeping a constant TOI; however, both volumetric and specific productivities were lower. In synchronous infection, at high MOI, the specific productivity decreased when the cells were infected in the late phase of growth. Product degradation due to cell lysis strongly influenced the optimal time of harvest (TOH). Time of harvest was found to be highly dependent on the MOI, and a direct relationship with the cell yield was obtained. Analysis of the culture medium reveals that glutamine depletion occurs in the late phase of the growth. Supplementation of glutamine to uninfected cell cultures resulted in an increased cell yield. Its addition to cultures infected in the middle phase of the growth curve was also able to restore the productivity levels, but addition to cells in their stationary phase caused no observable effect on product expression. The study clearly shows that for a specific TOI it is not obvious what the correct MOI should be to obtain the best volumetric productivity.


Subject(s)
Baculoviridae/growth & development , Spodoptera/virology , Virion/growth & development , Algorithms , Animals , Baculoviridae/metabolism , Capsid Proteins/metabolism , Cell Culture Techniques , Cell Division/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Radiation , Glucose/pharmacology , Glutamic Acid/pharmacology , Glutamine/pharmacology , Lactic Acid/pharmacology , Parvovirus, Porcine/growth & development , Parvovirus, Porcine/metabolism , Recombinant Proteins/metabolism , Spodoptera/cytology , Spodoptera/growth & development , Viral Plaque Assay , Virus Cultivation , Virus Replication
5.
J Virol ; 68(2): 905-10, 1994 Feb.
Article in English | MEDLINE | ID: mdl-8289393

ABSTRACT

The transcriptional activity of human immunodeficiency virus type 1 (HIV-1) is affected by many cellular factors. Homologies near the HIV-1 initiator region to the DNA-binding sequences of YY1, a multifunctional transcription factor known to regulate diverse viral and cellular promoters, suggested that YY1 might regulate HIV-1. Antibody to YY1 blocked the formation of complexes by HeLa cell nuclear extract and a DNA oligonucleotide encoding the HIV-1 initiator region. HIV-1 long terminal repeat (LTR) expression, as measured the expression of a transfected LTR-CAT reporter gene, was repressed more than 12-fold by the cotransfection of a YY1 expression vector. HIV-1 production by both COS-1 and CEM cells after transfection of an infectious molecular HIV-1 clone was repressed 7- to 20-fold by cotransfection of a YY1 expression vector. HIV-1 production was also decreased threefold in a CD4-positive lymphocyte cell line chronically infected with HIV-1 (8E5) after transfection of YY1. In situ hybridization studies confirmed that YY1 reduced HIV-1 RNA expression. YY1 may play an important role in the regulation of HIV-1 LTR expression in vivo and virus production by infected cells.


Subject(s)
DNA-Binding Proteins/pharmacology , Gene Expression Regulation, Viral/drug effects , HIV Long Terminal Repeat/genetics , HIV-1/genetics , Transcription Factors/pharmacology , Transcription, Genetic/drug effects , Animals , Base Sequence , Cell Line , Chloramphenicol O-Acetyltransferase/biosynthesis , DNA-Binding Proteins/immunology , Erythroid-Specific DNA-Binding Factors , HIV Core Protein p24/biosynthesis , HIV-1/growth & development , Humans , In Situ Hybridization , Lymphoid Tissue/microbiology , Molecular Sequence Data , Protein Binding , RNA, Messenger/isolation & purification , RNA, Viral/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Transcription Factors/immunology , Virion/growth & development , YY1 Transcription Factor
6.
Virus Res ; 5(2-3): 131-44, 1986 Aug.
Article in English | MEDLINE | ID: mdl-3765820

ABSTRACT

The human respiratory coronavirus OC43 was grown on a human rectal tumor cell line and was isotopically labeled with amino acids, glucosamine, and orthophosphate to analyze virion structural proteins. Four major protein species were resolved by electrophoresis and many of their properties were deduced from digestion studies using proteolytic enzymes. The four proteins are: A 190 kDa protein, the presumed peplomeric protein, that was glycosylated and proteolytically cleavable by trypsin into subunits of 110 and 90 kDa. The subunits each represent a different amino acid sequence on the basis of peptide mapping; a 130 kDa protein that was glycosylated and behaved as a disulfide-linked dimer of 65 kDa molecules. It is the apparent virion hemagglutinin on the basis of digestion studies with trypsin, bromelain and pronase; a 55 kDa nucleocapsid protein that was phosphorylated; a 26 kDa matrix protein that was glycosylated. The 190, 130, 55 and 26 kDa species can therefore be designated P, H, N and M, respectively. They exist in molar ratios of 4:1:33:33, and are calculated to be present at the rate of 88, 22, 726, and 726 molecules per virion, respectively.


Subject(s)
Coronaviridae/growth & development , Viral Proteins/isolation & purification , Cell Line , Chymotrypsin , Coronaviridae/isolation & purification , Humans , Peptide Mapping , Rectal Neoplasms , Viral Proteins/biosynthesis , Virion/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL