Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Molecules ; 27(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35164343

ABSTRACT

Since the efficiency in the transcription of the HIV genome contributes to the success of viral replication and infectivity, we investigated the downregulating effects of the spirobisindole alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) from the endemic Philippine medicinal plant, Voacanga globosa, during HIV gene transcription. Alkaloids 1-3 were explored for their inhibitory activity on TNF-α-induced viral replication in two latently HIV-infected cell lines, OM10.1 and J-Lat. The induction of HIV replication from OM10.1 and J-Lat cells elicited by TNF-α was blocked by globospiramine (1) within noncytotoxic concentrations. Furthermore, globospiramine (1) was found to target the NF-ĸB activation cascade in a dose-dependent manner when the transcriptional step at which inhibitory activity is exerted was examined in TNF-α-induced 293 human cells using transient reporter (luciferase) gene expression systems (HIV LTR-luc, ĸB-luc, and mutant ĸB-luc). Interrogation through molecular docking against the NF-ĸB p50/p65 heterodimer and target sites of the subunits comprising the IKK complex revealed high binding affinities of globospiramine (1) against the S281 pocket of the p65 subunit (BE = -9.2 kcal/mol) and the IKKα activation loop (BE = -9.1 kcal/mol). These findings suggest globospiramine (1) as a molecular inspiration to discover new alkaloid-based anti-HIV derivatives.


Subject(s)
Alkaloids/pharmacology , HIV Infections/metabolism , HIV-1/physiology , I-kappa B Kinase/metabolism , NF-kappa B p50 Subunit/metabolism , Transcription Factor RelA/metabolism , Voacanga/chemistry , Alkaloids/chemistry , Cell Line , Dose-Response Relationship, Drug , HIV Infections/drug therapy , HIV-1/drug effects , HL-60 Cells , Humans , I-kappa B Kinase/chemistry , Indole Alkaloids/pharmacology , Models, Biological , Molecular Docking Simulation , NF-kappa B/metabolism , NF-kappa B p50 Subunit/chemistry , Plant Extracts/chemistry , Signal Transduction/drug effects , Spiro Compounds/pharmacology , Transcription Factor RelA/chemistry , Tumor Necrosis Factor-alpha/pharmacology , Virus Latency/drug effects , Virus Replication/drug effects
2.
J Med Chem ; 65(4): 3460-3472, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35113551

ABSTRACT

Three new diterpenes, stellejasmins A (1) and B (2) and 12-O-benzoylphorbol-13-heptanoate (3), were isolated from the roots of Stellera chamaejasme L. The structures of 1-3 were elucidated by extensive NMR and mass spectroscopic analyses. Compounds 1 and 2 are the first derivatives containing a hydroxy group at C-2 in the family of daphnane and tigliane diterpenes. The presence of a chlorine atom in 1 is unique in the plant metabolite. Compound 3 has an odd-number acyl group, which is biosynthetically notable. Human immunodeficiency virus (HIV) LTR-driven transcription activity was tested with 1-3 and 17 known diterpenes isolated from S. chamaejasme L. and Wikstroemia retusa A.Gray. Among these, gnidimacrin (4), stelleralide A (5), and wikstroelide A (20) were highly potent, with EC50 values of 0.14, 0.33, and 0.39 nM, respectively. The structure-activity relationship (SAR) was investigated using 20 natural and eight synthetic diterpenes. This is the first SAR study on natural daphnane and tigliane diterpenes.


Subject(s)
Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , Diterpenes/chemical synthesis , Diterpenes/pharmacology , HIV/drug effects , Phorbols/chemistry , Virus Latency/drug effects , Diterpenes/chemistry , Models, Molecular , Molecular Docking Simulation , Phorbols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Structure-Activity Relationship , Thymelaeaceae/chemistry , Wikstroemia/chemistry
3.
Biochem Pharmacol ; 195: 114844, 2022 01.
Article in English | MEDLINE | ID: mdl-34801521

ABSTRACT

Latency reversing agents (LRAs), such as protein kinase C (PKC) agonists, constitute a promising strategy for exposing and eliminating the HIV-1 latent reservoir. PKC agonists activate NF-κB and induce deleterious pro-inflammatory cytokine production. Adjuvant pharmacological agents, such as ruxolitinib, a JAK inhibitor, have previously been combined with LRAs to reduce deleterious pro-inflammatory cytokine secretion without inhibiting HIV-1 reactivation in vitro. Histone deacetylase inhibitors (HDACi) are known to dampen pro-inflammatory cytokine secretion in the context of other diseases and synergize with LRAs to reactivate latent HIV-1. This study investigates whether a panel of epigenetic modifiers, including HDACi, could dampen PKC-induced pro-inflammatory cytokine secretion during latency reversal. We screened an epigenetic modifier library for compounds that reduced intracellular IL-6 production induced by the PKC agonist Ingenol-3,20-dibenzoate. We further tested the most promising epigenetic inhibitor class, HDACi, for their ability to reduce pro-inflammatory cytokines and reactivate latent HIV-1 ex vivo. We identified nine epigenetic modulators that reduced PKC-induced intracellular IL-6. In cells from aviremic individuals living with HIV-1, the HDAC1-3 inhibitor, suberohydroxamic acid (SBHA), reduced secretion of pro-inflammatory cytokines TNF-α, IL-5, IL-2r, and IL-17 but did not significantly reactivate latent HIV-1 when combined with Ingenol-3,20-dibenzoate. Combining SBHA and Ingenol-3,20-dibenzoate reduces deleterious cytokine production during latency reversal but does not induce significant viral reactivation in aviremic donor PBMCs. The ability of SBHA to reduce PKC-induced pro-inflammatory cytokines when combined with Ingenol-3,20-dibenzoate suggests SBHA can be used to reduced PKC induced pro-inflammatory cytokines but not to achieve latency reversal in the context of HIV-1.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Cytokines/metabolism , Diterpenes/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Inflammation Mediators/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Humans , Protein Kinase C/metabolism , Virus Activation/drug effects , Virus Latency/drug effects
4.
Elife ; 102021 11 18.
Article in English | MEDLINE | ID: mdl-34792020

ABSTRACT

A fundamental challenge in human immunodeficiency virus (HIV) eradication is to understand how the virus establishes latency, maintains stable cellular reservoirs, and promotes rebound upon interruption of antiretroviral therapy (ART). Here, we discovered an unexpected role of the ubiquitous gasotransmitter hydrogen sulfide (H2S) in HIV latency and reactivation. We show that reactivation of HIV is associated with downregulation of the key H2S producing enzyme cystathionine-γ-lyase (CTH) and reduction in endogenous H2S. Genetic silencing of CTH disrupts redox homeostasis, impairs mitochondrial function, and remodels the transcriptome of latent cells to trigger HIV reactivation. Chemical complementation of CTH activity using a slow-releasing H2S donor, GYY4137, suppressed HIV reactivation and diminished virus replication. Mechanistically, GYY4137 blocked HIV reactivation by inducing the Keap1-Nrf2 pathway, inhibiting NF-κB, and recruiting the epigenetic silencer, YY1, to the HIV promoter. In latently infected CD4+ T cells from ART-suppressed human subjects, GYY4137 in combination with ART prevented viral rebound and improved mitochondrial bioenergetics. Moreover, prolonged exposure to GYY4137 exhibited no adverse influence on proviral content or CD4+ T cell subsets, indicating that diminished viral rebound is due to a loss of transcription rather than a selective loss of infected cells. In summary, this work provides mechanistic insight into H2S-mediated suppression of viral rebound and suggests exploration of H2S donors to maintain HIV in a latent form.


Subject(s)
Energy Metabolism , HIV/drug effects , Homeostasis , Mitochondria/physiology , Virus Latency/drug effects , Virus Replication/drug effects , HIV/physiology , Hydrogen Sulfide , Morpholines/pharmacology , Organothiophosphorus Compounds/pharmacology , Oxidation-Reduction
5.
Front Immunol ; 12: 639378, 2021.
Article in English | MEDLINE | ID: mdl-34093527

ABSTRACT

Microglia, the resident brain phagocytes, likely play a key role in human immunodeficiency virus (HIV) infection of the central nervous system (CNS) and subsequent neuropathogenesis; however, the nature of the infection-induced changes that yield damaging CNS effects and the stimuli that provoke microglial activation remains elusive, especially in the current era of using antiretroviral (ARV) drugs for ARV therapy (ART). Altered microglial metabolism can modulate cellular functionality and pathogenicity in neurological disease. While HIV infection itself alters brain energy metabolism, the effect of ARV drugs, particularly those currently used in treatment, on metabolism is understudied. Dolutegravir (DTG) and emtricitabine (FTC) combination, together with tenofovir (TAF or TDF), is one of the recommended first line treatments for HIV. Despite the relatively good tolerability and safety profile of FTC, a nucleoside reverse transcriptase inhibitor, and DTG, an integrase inhibitor, adverse side effects have been reported and highlight a need to understand off-target effects of these medications. We hypothesized that similar to previous ART regimen drugs, DTG and FTC side effects involve mitochondrial dysfunction. To increase detection of ARV-induced mitochondrial effects, highly glycolytic HeLa epithelial cells were forced to rely on oxidative phosphorylation by substituting galactose for glucose in the growth media. We assessed ATP levels, resazurin oxidation-reduction (REDOX), and mitochondrial membrane potential following 24-hour exposure (to approximate effects of one dose equivalent) to DTG, FTC, and efavirenz (EFV, a known mitotoxic ARV drug). Further, since microglia support productive HIV infection, act as latent HIV cellular reservoirs, and when dysfunctional likely contribute to HIV-associated neurocognitive disorders, the experiments were repeated using BV2 microglial cells. In HeLa cells, FTC decreased mitochondrial REDOX activity, while DTG, similar to EFV, impaired both mitochondrial ATP generation and REDOX activity. In contrast to HeLa cells, DTG increased cellular ATP generation and mitochondrial REDOX activity in BV2 cells. Bioenergetic analysis revealed that DTG, FTC, and EFV elevated BV2 cell mitochondrial respiration. DTG and FTC exposure induced distinct mitochondrial functional changes in HeLa and BV2 cells. These findings suggest cell type-specific metabolic changes may contribute to the toxic side effects of these ARV drugs.


Subject(s)
Alkynes/pharmacology , Anti-HIV Agents/pharmacology , Benzoxazines/pharmacology , Cyclopropanes/pharmacology , Emtricitabine/pharmacology , Epithelial Cells/drug effects , HIV Infections/drug therapy , Heterocyclic Compounds, 3-Ring/pharmacology , Microglia/drug effects , Oxazines/pharmacology , Piperazines/pharmacology , Pyridones/pharmacology , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Epithelial Cells/metabolism , HIV Infections/metabolism , HIV Infections/virology , HIV-1/drug effects , HeLa Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Microglia/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oxazines/metabolism , Reverse Transcriptase Inhibitors/pharmacology , Virus Latency/drug effects , Xanthenes/metabolism
6.
Viruses ; 13(6)2021 05 28.
Article in English | MEDLINE | ID: mdl-34071559

ABSTRACT

Human herpesviruses are known to induce a broad spectrum of diseases, ranging from common cold sores to cancer, and infections with some types of these viruses, known as human oncogenic herpesviruses (HOHVs), can cause cancer. Challenges with viral latency, recurrent infections, and drug resistance have generated the need for finding new drugs with the ability to overcome these barriers. Berberine (BBR), a naturally occurring alkaloid, is known for its multiple biological activities, including antiviral and anticancer effects. This paper comprehensively compiles all studies that have featured anti-HOHV properties of BBR along with promising preventive effects against the associated cancers. The mechanisms and pathways induced by BBR via targeting the herpesvirus life cycle and the pathogenesis of the linked malignancies are reviewed. Approaches to enhance the therapeutic efficacy of BBR and its use in clinical practice as an anti-herpesvirus drug are also discussed.


Subject(s)
Antiviral Agents/therapeutic use , Berberine/therapeutic use , Carcinogenesis/drug effects , Herpesviridae Infections/drug therapy , Herpesviridae/drug effects , Neoplasms/drug therapy , Neoplasms/virology , Animals , Clinical Trials as Topic , Herpesviridae/classification , Herpesviridae/pathogenicity , Herpesviridae Infections/complications , Humans , Inflammation/drug therapy , Inflammation/virology , Mice , Virus Latency/drug effects , Virus Replication/drug effects
7.
Proc Natl Acad Sci U S A ; 117(50): 32066-32077, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33239444

ABSTRACT

In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/therapy , HIV-1/immunology , Virus Replication/immunology , Adult , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Blood Transfusion, Autologous/methods , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Combined Modality Therapy/methods , Female , HIV Antibodies/blood , HIV Antibodies/isolation & purification , HIV Antibodies/therapeutic use , HIV Infections/blood , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Immunoglobulin G/therapeutic use , Leukapheresis , Male , Middle Aged , Primary Cell Culture , Virus Latency/drug effects , Virus Latency/immunology , Virus Replication/drug effects , env Gene Products, Human Immunodeficiency Virus/immunology
8.
J Biol Chem ; 295(41): 14084-14099, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32788215

ABSTRACT

A sterilizing or functional cure for HIV is currently precluded by resting CD4+ T cells that harbor latent but replication-competent provirus. The "shock-and-kill" pharmacological ap-proach aims to reactivate provirus expression in the presence of antiretroviral therapy and target virus-expressing cells for elimination. However, no latency reversal agent (LRA) to date effectively clears viral reservoirs in humans, suggesting a need for new LRAs and LRA combinations. Here, we screened 216 compounds from the pan-African Natural Product Library and identified knipholone anthrone (KA) and its basic building block anthralin (dithranol) as novel LRAs that reverse viral latency at low micromolar concentrations in multiple cell lines. Neither agent's activity depends on protein kinase C; nor do they inhibit class I/II histone deacetylases. However, they are differentially modulated by oxidative stress and metal ions and induce distinct patterns of global gene expression from established LRAs. When applied in combination, both KA and anthralin synergize with LRAs representing multiple functional classes. Finally, KA induces both HIV RNA and protein in primary cells from HIV-infected donors. Taken together, we describe two novel LRAs that enhance the activities of multiple "shock-and-kill" agents, which in turn may inform ongoing LRA combination therapy efforts.


Subject(s)
Anthracenes/pharmacology , Anthralin/pharmacology , HIV Infections/drug therapy , HIV-1/physiology , Virus Latency/drug effects , Drug Evaluation, Preclinical , HIV Infections/metabolism , HIV Infections/pathology , Humans , Jurkat Cells
9.
PLoS Pathog ; 15(12): e1008156, 2019 12.
Article in English | MEDLINE | ID: mdl-31790497

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human cancers, such as Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). Current treatment options for KSHV infection and virus associated diseases are sometimes ineffective, therefore, more effectively antiviral agents are urgently needed. As a herpesvirus, lytic replication is critical for KSHV pathogenesis and oncogenesis. In this study, we have established a high-throughput screening assay by using an inducible KSHV+ cell-line, iSLK.219. After screening a compound library that consisted of 1280 Food and Drug Administration (FDA)-approved drugs, 15 hit compounds that effectively inhibited KSHV virion production were identified, most of which have never been reported with anti-KSHV activities. Interestingly, 3 of these drugs target histamine receptors or signaling. Our data further confirmed that antagonists targeting different histamine receptors (HxRs) displayed excellent inhibitory effects on KSHV lytic replication from induced iSLK.219 or BCBL-1 cells. In contrast, histamine and specific agonists of HxRs promoted viral lytic replication from induced iSLK.219 or KSHV-infected primary cells. Mechanistic studies indicated that downstream MAPK and PI3K/Akt signaling pathways were required for histamine/receptors mediated promotion of KSHV lytic replication. Direct knockdown of HxRs in iSLK.219 cells effectively blocked viral lytic gene expression during induction. Using samples from a cohort of HIV+ patients, we found that the KSHV+ group has much higher levels of histamine in their plasma and saliva than the KSHV- group. Taken together, our data have identified new anti-KSHV agents and provided novel insights into the molecular bases of host factors that contribute to lytic replication and reactivation of this oncogenic herpesvirus.


Subject(s)
Antiviral Agents/pharmacology , Herpesvirus 8, Human/drug effects , Histamine/metabolism , Sarcoma, Kaposi/virology , Virus Activation/drug effects , Drug Evaluation, Preclinical , Herpesvirus 8, Human/physiology , High-Throughput Screening Assays , Humans , Receptors, Histamine/metabolism , Signal Transduction/physiology , Virus Activation/physiology , Virus Latency/drug effects , Virus Latency/physiology
10.
PLoS Pathog ; 15(12): e1008174, 2019 12.
Article in English | MEDLINE | ID: mdl-31830143

ABSTRACT

Primary effusion lymphoma (PEL) is an aggressive B-cell malignancy without effective treatment, and caused by the infection of Kaposi's sarcoma-associated herpesvirus (KSHV), predominantly in its latent form. Previously we showed that the SUMO2-interacting motif within the viral latency-associated nuclear antigen (LANASIM) is essential for establishment and maintenance of KSHV latency. Here, we developed a luciferase based live-cell reporter system to screen inhibitors selectively targeting the interaction between LANASIM and SUMO2. Cambogin, a bioactive natural product isolated from the Garcinia genus (a traditional herbal medicine used for cancer treatment), was obtained from the reporter system screening to efficiently inhibit the association of SUMO2 with LANASIM, in turn reducing the viral episome DNA copy number for establishment and maintenance of KSHV latent infection at a low concentration (nM). Importantly, Cambogin treatments not only specifically inhibited proliferation of KSHV-latently infected cells in vitro, but also induced regression of PEL tumors in a xenograft mouse model. This study has identified Cambogin as a novel therapeutic agent for treating PEL as well as eliminating persistent infection of oncogenic herpesvirus.


Subject(s)
Antineoplastic Agents/pharmacology , Lymphoma, Primary Effusion/virology , Terpenes/pharmacology , Virus Latency/drug effects , Animals , Antigens, Viral/drug effects , Antigens, Viral/metabolism , HEK293 Cells , Herpesviridae Infections/metabolism , Herpesvirus 8, Human , Humans , Mice , Nuclear Proteins/drug effects , Nuclear Proteins/metabolism , Plant Extracts/pharmacology , Small Ubiquitin-Related Modifier Proteins/drug effects , Small Ubiquitin-Related Modifier Proteins/metabolism , Xenograft Model Antitumor Assays
11.
J Med Chem ; 62(15): 6958-6971, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31343875

ABSTRACT

Currently, due to the HIV latency mechanism, the search continues for effective drugs to combat this issue and provide a cure for AIDS. Gnidimacrin activates latent HIV-1 replication and inhibits HIV-1 infection at picomolar concentrations. This natural diterpene was able to markedly reduce the latent HIV-1 DNA level and the frequency of latently infected cells. Therefore, gnidimacrin is an excellent lead compound, and its anti-HIV potential merits further investigation. Twenty-nine modified gnidimacrin derivatives were synthesized and evaluated in assays for HIV replication and latency activation to establish which molecular structures must be maintained and which can tolerate changes that may be needed for better pharmacological properties. The results indicated that hydroxyl substituents at C-5 and C-20 are essential, while derivatives modified at 3-OH with aromatic esters retain anti-HIV replication and latent activation activities. The half-lives of the potent GM derivatives are over 20 h, which implies that they are stable in the plasm even though they contain ester linkages. The established structure-activity relationship should be useful in the development of gnidimacrin or structurally related compounds as clinical trial candidates.


Subject(s)
Anti-HIV Agents/chemical synthesis , Diterpenes/chemical synthesis , HIV-1/drug effects , Plant Extracts/chemical synthesis , Virus Latency/drug effects , Animals , Anti-HIV Agents/pharmacology , Diterpenes/pharmacology , HIV-1/physiology , Humans , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Roots , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/chemical synthesis , Reactive Oxygen Species/pharmacology , Structure-Activity Relationship , Virus Latency/physiology
12.
Antiviral Res ; 169: 104555, 2019 09.
Article in English | MEDLINE | ID: mdl-31295520

ABSTRACT

The latent reservoir of HIV-1 in resting memory CD4+ T cells serves as a major barrier to curing HIV-1 infection. Reactivation of latent HIV-1 is proposed as a promising strategy for the clearance of the viral reservoirs. Because of the limitations of current latency reversal agents (LRAs), identification of new LRAs is urgently required. Here, we analyzed Euphorbia kansui extracts and obtained three ingenol derivative compounds named EK-1A, EK-5A and EK-15A. We found that ingenol derivatives can effectively reactivate latent HIV-1 at very low (nanomolar) concentrations in HIV latency model in vitro. Furthermore, ingenol derivatives exhibited synergy with other LRAs in reactivating latent HIV-1. We verified that EK-15A can promote latent HIV-1 reactivation in the ex vivo resting CD4+ T cells isolated from the peripheral blood of HIV-infected individuals on suppressive antiretroviral therapy. In addition, ingenol derivatives down-regulated the expression of cell surface HIV co-receptors CCR5 and CXCR4, therefore potentially preventing new infection of HIV-1. Our results indicated that the ingenol derivatives extracted from Euphorbia kansui have dual functions: reactivation of latent HIV-1 and inhibition of HIV-1 infection.


Subject(s)
Anti-HIV Agents/pharmacology , Diterpenes/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Virus Latency/drug effects , Anti-HIV Agents/chemistry , CD4-Positive T-Lymphocytes , Cell Line , China , Diterpenes/chemistry , Drug Synergism , Euphorbia/chemistry , HIV Infections/prevention & control , Humans , Plant Extracts/pharmacology , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Virus Activation/drug effects
13.
PLoS One ; 13(11): e0207664, 2018.
Article in English | MEDLINE | ID: mdl-30481211

ABSTRACT

Euphorbia umbellata (E. umbellata) belongs to Euphorbiaceae family, popularly known as Janauba, and its latex contains a combination of phorbol esters with biological activities described to different cellular protein kinase C (PKC) isoforms. Here, we identified deoxi-phorbol esters present in E. umbellata latex alcoholic extract that are able to increase HIV transcription and reactivate virus from latency models. This activity is probably mediated by NF-kB activation followed by nuclear translocation and binding to the HIV LTR promoter. In addition, E. umbellata latex extract induced the production of pro inflammatory cytokines in vitro in human PBMC cultures. This latex extract also activates latent virus in human PBMCs isolated from HIV positive patients as well as latent SIV in non-human primate primary CD4+ T lymphocytes. Together, these results indicate that the phorbol esters present in E. umbellata latex are promising candidate compounds for future clinical trials for shock and kill therapies to promote HIV cure and eradication.


Subject(s)
Euphorbia/chemistry , HIV-1/drug effects , Latex/chemistry , Phorbol Esters/pharmacology , Plant Extracts/pharmacology , Virus Activation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Ethanol/chemistry , HIV-1/physiology , Host-Pathogen Interactions/drug effects , Humans , Jurkat Cells , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Virus Latency/drug effects , Virus Latency/physiology
14.
JCI Insight ; 3(19)2018 10 04.
Article in English | MEDLINE | ID: mdl-30282829

ABSTRACT

The presence of a reservoir of latently infected cells in HIV-infected patients is a major barrier towards finding a cure. One active cure strategy is to find latency-reversing agents that induce viral reactivation, thus leading to immune cell recognition and elimination of latently infected cells, known as the shock-and-kill strategy. Therefore, the identification of molecules that reactivate latent HIV and increase immune activation has the potential to further these strategies into the clinic. Here, we characterized synthetic molecules composed of a TLR2 and a TLR7 agonist (dual TLR2/7 agonists) as latency-reversing agents and compared their activity with that of the TLR2 agonist Pam2CSK4 and the TLR7 agonist GS-9620. We found that these dual TLR2/7 agonists reactivate latency by 2 complementary mechanisms. The TLR2 component reactivates HIV by inducing NF-κB activation in memory CD4+ T cells, while the TLR7 component induces the secretion of TNF-α by monocytes and plasmacytoid dendritic cells, promoting viral reactivation in CD4+ T cells. Furthermore, the TLR2 component induces the secretion of IL-22, which promotes an antiviral state and blocks HIV infection in CD4+ T cells. Our study provides insight into the use of these agonists as a multipronged approach targeting eradication of latent HIV.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Infections/drug therapy , HIV-1/physiology , Toll-Like Receptor 2/agonists , Toll-Like Receptor 7/agonists , Virus Activation/drug effects , Adolescent , Adult , Aged , Anti-HIV Agents/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Drug Evaluation, Preclinical , Female , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , Humans , Interleukins/immunology , Interleukins/metabolism , Jurkat Cells , Lipopeptides/pharmacology , Lipopeptides/therapeutic use , Male , Middle Aged , Primary Cell Culture , Pteridines/pharmacology , Pteridines/therapeutic use , Toll-Like Receptor 2/immunology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 7/immunology , Toll-Like Receptor 7/metabolism , Virus Activation/immunology , Virus Latency/drug effects , Virus Latency/immunology , Young Adult , Interleukin-22
15.
Sci Rep ; 8(1): 14702, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279437

ABSTRACT

Persistence of latent HIV-1 in macrophages (MACs) and T-helper lymphocytes (THLs) remain a major therapeutic challenge. Currently available latency reversing agents (LRAs) are not very effective in vivo. Therefore, understanding of physiologic mechanisms that dictate HIV-1 latency/reactivation in reservoirs is clearly needed. Mesenchymal stromal/stem cells (MSCs) regulate the function of immune cells; however, their role in regulating virus production from latently-infected MACs & THLs is not known. We documented that exposure to MSCs or their conditioned media (MSC-CM) rapidly increased HIV-1 p24 production from the latently-infected U1 (MAC) & ACH2 (THL) cell lines. Exposure to MSCs also increased HIV-1 long terminal repeat (LTR) directed gene expression in the MAC and THL reporter lines, U937-VRX and J-Lat (9.2), respectively. MSCs exposed to CM from U1 cells (U1-CM) showed enhanced migratory ability towards latently-infected cells and retained their latency-reactivation potential. Molecular studies showed that MSC-mediated latency-reactivation was dependent upon both the phosphatidyl inositol-3-kinase (PI3K) and nuclear factor-κB (NFκB) signaling pathways. The pre-clinically tested inhibitors of PI3K (PX-866) and NFκB (CDDO-Me) suppressed MSC-mediated HIV-1 reactivation. Furthermore, coexposure to MSC-CM enhanced the latency-reactivation efficacy of the approved LRAs, vorinostat and panobinostat. Our findings on MSC-mediated latency-reactivation may provide novel strategies against persistent HIV-1 reservoirs.


Subject(s)
Anti-HIV Agents/pharmacology , HIV-1/physiology , Mesenchymal Stem Cells/metabolism , Virus Activation/drug effects , Anti-HIV Agents/therapeutic use , Cell Line , Culture Media, Conditioned/pharmacology , Drug Evaluation, Preclinical , Gene Expression Regulation, Viral/drug effects , Gonanes/pharmacology , HIV Infections/virology , HIV Long Terminal Repeat/drug effects , HIV-1/drug effects , Humans , Mesenchymal Stem Cells/drug effects , NF-kappa B/metabolism , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Panobinostat/pharmacology , Panobinostat/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Virus Latency/drug effects , Vorinostat/pharmacology , Vorinostat/therapeutic use
16.
AIDS Res Hum Retroviruses ; 34(1): 31-38, 2018 01.
Article in English | MEDLINE | ID: mdl-29226706

ABSTRACT

The study of natural products in biomedical research is not a modern concept. Many of the most successful medical therapeutics are derived from natural products, including those studied in the field of HIV/AIDS. Biomedical research has a rich history of discovery based on screens of medicinal herbs and traditional medicine practices. Compounds derived from natural products, which repress HIV and those that activate latent HIV, have been reported. It is important to remember the tradition in medical research to derive therapies based on these natural products and to overcome the negative perception of natural products as an "alternative medicine."


Subject(s)
Anti-HIV Agents/pharmacology , Biological Products/pharmacology , HIV-1/drug effects , Anti-HIV Agents/chemistry , Biological Products/chemistry , HIV Infections/drug therapy , HIV-1/physiology , Humans , Plants, Medicinal/chemistry , Virus Latency/drug effects , Virus Replication/drug effects
17.
J Ethnopharmacol ; 211: 267-277, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-28970153

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Current HIV therapies do not act on latent cellular HIV reservoirs; hence they are not curative. While experimental latency reversal agents (LRAs) can promote HIV expression in these cells, thereby exposing them to immune recognition, existing LRAs exhibit limited clinical efficacy and high toxicity. We previously described a traditional 3-step medicinal plant regimen used for HIV/AIDS management in Northern Botswana that inhibits HIV replication in vitro. Here we describe use of one component of the regimen that additionally contains novel phorbol esters possessing HIV latency-reversal properties. AIM OF THE STUDY: We sought to document experiences of traditional medicine users, assess the ability of traditional medicine components to reverse HIV latency in vitro, and identify pure compounds that conferred these activities. MATERIALS AND METHODS: Experiences of two HIV-positive traditional medicine users (patients) were documented using qualitative interview techniques. Latency reversal activity was assessed using a cell-based model (J-Lat, clone 9.2). Crude plant extracts were fractionated by open column chromatography and reverse-phase HPLC. Compound structures were elucidated using NMR spectroscopy and mass spectrometry. RESULTS: Patients using the 3-step regimen reported improved health over several years despite no reported use of standard HIV therapies. Crude extracts from Croton megalobotrys Müll Arg. ("Mukungulu"), the third component of the 3-step regimen, induced HIV expression in J-lat cells to levels comparable to the known LRA prostratin. Co-incubation with known LRAs and pharmacological inhibitors indicated that the active agent(s) in C. megalobotrys were likely to be protein kinase C (PKC) activator(s). Consistent with these results, two novel phorbol esters (Namushen 1 and 2) were isolated as abundant components of C. megalobotrys and were sufficient to confer HIV latency reversal in vitro. CONCLUSION: We have identified novel LRAs of the phorbol ester class from a medicinal plant used in HIV/AIDS management. These data, combined with self-reported health effects and previously-described in vitro anti-HIV activities of this traditional 3-step regimen, support the utility of longitudinal observational studies of patients undergoing this regimen to quantify its effects on plasma viral loads and HIV reservoir size in vivo.


Subject(s)
Anti-HIV Agents/therapeutic use , Croton , HIV Infections/drug therapy , Phorbol Esters/pharmacology , Virus Latency/drug effects , Cell Line , HIV-1/drug effects , Humans , Male , Medicine, Traditional , Middle Aged , Proviruses/drug effects
18.
Sci Rep ; 7(1): 9451, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842560

ABSTRACT

Cells harboring latent HIV-1 pose a major obstacle to eradication of the virus. The 'shock and kill' strategy has been broadly explored to purge the latent reservoir; however, none of the current latency-reversing agents (LRAs) can safely and effectively activate the latent virus in patients. In this study, we report an ingenol derivative called EK-16A, isolated from the traditional Chinese medicinal herb Euphorbia kansui, which displays great potential in reactivating latent HIV-1. A comparison of the doses used to measure the potency indicated EK-16A to be 200-fold more potent than prostratin in reactivating HIV-1 from latently infected cell lines. EK-16A also outperformed prostratin in ex vivo studies on cells from HIV-1-infected individuals, while maintaining minimal cytotoxicity effects on cell viability and T cell activation. Furthermore, EK-16A exhibited synergy with other LRAs in reactivating latent HIV-1. Mechanistic studies indicated EK-16A to be a PKCγ activator, which promoted both HIV-1 transcription initiation by NF-κB and elongation by P-TEFb signal pathways. Further investigations aimed to add this compound to the therapeutic arsenal for HIV-1 eradication are in the pipeline.


Subject(s)
Anti-HIV Agents/therapeutic use , Diterpenes/therapeutic use , HIV Infections/virology , HIV-1/physiology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Virus Activation/drug effects , Virus Latency/drug effects , Cell Death , Cell Survival , Cells, Cultured , Diterpenes/chemistry , Drug Synergism , Drug Therapy, Combination , Euphorbia/virology , Humans , NF-kappa B/metabolism , Phorbol Esters/therapeutic use , Positive Transcriptional Elongation Factor B/metabolism , Protein Kinase C/metabolism , Signal Transduction , T-Lymphocytes/virology , Transcriptional Activation
19.
J Gen Virol ; 98(4): 799-809, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28113052

ABSTRACT

Antiretroviral therapy (ART) can control human immunodeficiency virus-1 (HIV-1) replication in infected individuals. Unfortunately, patients remain persistently infected owing to the establishment of latent infection requiring that ART be maintained indefinitely. One strategy being pursued involves the development of latency-reversing agents (LRAs) to eliminate the latent arm of the infection. One class of molecules that has been tested for LRA activity is the epigenetic modulating compounds histone deacetylases inhibitors (HDACis). Previously, initial screening of these molecules typically commenced using established cell models of viral latency, and although certain drugs such as the HDACi suberoylanilide hydroxamic acid demonstrated strong activity in these models, it did not translate to comparable activity with patient samples. Here we developed a primary cell model of viral latency using primary resting CD4+ T cells infected with Vpx-complemented HIV-1 and found that the activation profile using previously described LRAs mimicked that obtained with patient samples. This primary cell model was used to evaluate 94 epigenetic compounds. Not surprisingly, HDACis were found to be the strongest activators. However, within the HDACi class, the most active LRAs with the least pronounced toxicity contained a benzamide functional moiety with a pyridyl cap group, as exemplified by the HDACi chidamide. The results indicate that HDACis with a benzamide moiety and pyridyl cap group should be considered for further drug development in the pursuit of a successful viral clearance strategy.


Subject(s)
Benzamides/metabolism , CD4-Positive T-Lymphocytes/virology , Drug Evaluation, Preclinical/methods , HIV-1/physiology , Histone Deacetylase Inhibitors/metabolism , Virus Activation/drug effects , Virus Latency/drug effects , Aminopyridines/chemistry , Aminopyridines/metabolism , Benzamides/chemistry , Cells, Cultured , Histone Deacetylase Inhibitors/chemistry , Humans
20.
PLoS One ; 11(12): e0168027, 2016.
Article in English | MEDLINE | ID: mdl-27977742

ABSTRACT

While highly active anti-retroviral therapy has greatly improved the lives of HIV infected individuals, these treatments are unable to eradicate the virus. Current approaches to reactivate the virus have been limited by toxicity, lack of an orally available therapy, and limited responses in primary CD4+ T cells and in clinical trials. The PKC agonist ingenol, purified from Euphorbia plants, is a potent T cell activator and reactivates latent HIV. Euphorbia kansui itself has been used for centuries in traditional Chinese medicine to treat ascites, fluid retention, and cancer. We demonstrate that an extract of this plant, Euphorbia kansui, is capable of recapitulating T cell activation induced by the purified ingenol. Indeed, Euphorbia kansui induced expression of the early T cell activation marker CD69 and P-TEFb in a dose-dependent manner. Furthermore, Euphorbia kansui reactivated latent HIV in a CD4+ T cell model of latency and in HIV+ HAART suppressed PBMC. When combined with the other latency reversing agents, the effective dose of Euphorbia kansui required to reactive HIV was reduced 10-fold and resulted in synergistic reactivation of latent HIV. We conclude that Euphorbia Euphorbia kansui reactivates latent HIV and activates CD4+ T cells. When used in combination with a latency reversing agent, the effective dose of Euphorbia kansui is reduced; which suggests its application as a combination strategy to reactivate latent HIV while limiting the toxicity due to global T cell activation. As a natural product, which has been used in traditional medicine for thousands of years, Euphorbia kansui is attractive as a potential treatment strategy, particularly in resource poor countries with limited treatment options. Further clinical testing will be required to determine its safety with current anti-retroviral therapies.


Subject(s)
Euphorbia/chemistry , HIV Infections/drug therapy , Virus Latency/drug effects , Adult , CD4-Positive T-Lymphocytes/metabolism , Cell Line , Cells, Cultured , Diterpenes/pharmacology , Diterpenes/therapeutic use , Drug Synergism , Female , Flow Cytometry , Humans , Male , Medicine, Chinese Traditional/methods , Middle Aged , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL