Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Chemosphere ; 352: 141336, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309599

ABSTRACT

In the pursuit of a safe, low-cost, and sustainable method for the reuse of landfill-mined-soil-like-fractions (LFMSFs), pot experiments were conducted using seven growth substrates consisting of LFMSFs, tea residue, and peat for the cultivation of Photinia × fraseri. Six of the substrates had 40 %:60 %, 60 %:40 %, and 80 %:20 % volume ratios of LFMSFs to tea residue or peat, and one substrate consisted entirely of LFMSFs. The physicochemical properties of the substrate, growth parameters of the plants, and heavy metal content in the different pots were determined after one year of growth. The results indicated that the physicochemical properties of the substrate, that was composed of a mixture of LFMSFs and tea residue showed a significant improvement in organic matter, nitrogen, phosphorus, and potassium. However, there was also an increase in the salt and heavy metal contents when compared with those of peat. The plant growth in the LFMSF and tea residue substrate was slightly lower than that in the LFMSF and peat mixture. Notably, the best plant growth and environmentally friendly effects were observed when LFMSFs were added at 40 %. Additionally, most of the heavy metals were primarily removed from the substrate through the leaves of the seedlings, with the heavy metal contents being relatively low. In conclusion, LFMSFs as a cultivation substrate, represent a practical approach for reutilization, which could contribute to the reduction of reliance on traditional resources.


Subject(s)
Metals, Heavy , Soil Pollutants , Soil/chemistry , Metals, Heavy/analysis , Soil Pollutants/analysis , Waste Disposal Facilities , Tea
2.
Environ Sci Pollut Res Int ; 31(5): 8223-8239, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38175518

ABSTRACT

The increasing number of building and demolition projects results in huge amounts of construction and demolition wastes (CDWs) that are illegally dumped. However, these wastes must be disposed of in appropriate legal sites to protect the environment and human health. After reviewing the literature, no prior research examined optimal site selection for dumping or recycling CDW in an Egyptian city. Furthermore, the absence of field surveys did not offer a holistic understanding of the specific criteria used in the model for this region, nor did it permit an assessment of the suitability of existing dumpsites, thereby revealing certain limitations in the final results. In this regard, this research aims to apply a multi-criteria geographic information system (GIS)-based framework to identify an optimal site for CDW disposal in Kafr El Sheikh City. The criteria affecting the site selection are identified and categorized from prior literature, which are further refined using field surveys and focus group to evaluate their applicability in the context of an Egyptian city. After conducting questionnaire surveys, the trapezoidal interval type II fuzzy analytic hierarchy process is applied to compute the weights of the identified criteria from the perspective of each group of experts. The entropy-based aggregation approach is employed to identify the compromise weights taking into account the preferences of different groups. GIS is a powerful tool for geoprocessing and analyzing spatial big data. The result is a scenario map for the optimal site locations with varying suitability scales (i.e., excellent, very good, good, average, poor, and very poor). The proposed methodology provides what-if scenarios based on a selected set of criteria. According to the results of the multi-criteria decision analysis models, the suitability varies based on the weights of the criteria. For the equal-weighted criteria model, the excellent category covers 5.96% of the study area, increasing to 6.48% for the weighted criteria model. These areas primarily lie in the northeast direction. Conversely, the majority of the study area, 41.80% under equal-weighted criteria and 32.39% under weighted criteria, falls within the average and poor suitability categories, respectively. In general, the most suitable areas are located on the outskirts of the city, and the suitability decreases near the central business district. To bridge the gap between research findings and practical applications, a land use analysis employing satellite imagery is conducted to pinpoint suitable locations for CDW disposal. Existing CDW dumpsites predominantly fall within the range of poor to very good for the equal-weighted criteria model, while the weighted criteria model categorizes them into the poor (16.66%) and average (83.33%) categories. The findings demonstrated the applicability of the proposed framework for CDW disposal management and planning.


Subject(s)
Refuse Disposal , Waste Management , Humans , Geographic Information Systems , Egypt , Refuse Disposal/methods , Recycling , Cities , Waste Disposal Facilities
3.
Environ Sci Pollut Res Int ; 31(5): 6992-7007, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38158525

ABSTRACT

Waste management in low-income countries faces challenges with an average cost of $35/ton approximately 51% collection efficiency. Despite investments in treatment, processing, and recycling, the system remains unsustainable owing to poor planning and policies. The current analysis of Lahore's solid waste management (SWM) system, selected as a major city of a low-income country as a case study, focuses on collection efficiency and waste generation. However, it neglects the complex and dynamic nature of SWM systems. To capture the complexities and dynamic nature of the SWM system, system dynamic (SD) modeling is proposed for its effectiveness in modeling complex and dynamic systems. Unlike previous attempts at SD modeling that mostly consider only some components of the SWM system with varying success, this study attempts to use a holistic approach by considering all aspects of an integrated SWM system. In addition, this study explores different financial and management policies, highlighting the weaknesses of the system through a quantitative comparison of three scenarios: (1) business-as-usual (BAU) which considers the current trends in waste generation and practices of collection and disposal to landfill, (2) waste treatment system (WTS) in which various waste treatment systems are included to reduce burden on landfill, and (3) introduction of user fee with awareness campaigns (UFAC) which encourages community participation towards reduction in waste generation and financially supports the SWM. All three scenarios use four indices: waste generation, waste ending up in landfill, uncollected waste, and annual budget deficit as performance indices. These scenarios were simulated over a 25-year period using an SD model, covering all six components of the SWM system. The BAU scenario shows a 16% increase in waste generation, a 173% increase in landfill waste, an 11% reduction in uncollected waste, and a 64% increase in the budget deficit over the simulation period, indicating an unsustainable SWM system. The WTS scenario exhibits a 16% increase in waste generation, a 155% increase in landfill waste, an 11% reduction in uncollected waste, and a 61% increase in the budget deficit, showing a significant reduction in landfill waste and a slight reduction in deficit but it remains unsustainable. The UFAC scenario, however, results in a 40% reduction in waste generation, a 67% decrease in uncollected waste, an 8% decrease in landfill waste, and a 59% decrease in the budget deficit. These results demonstrate that instituting user fees for SWM services and incentivizing community participation towards waste reduction and segregation can make the SWM system of Lahore sustainable. This SD model provides insights for policymakers, aiding what-if analyses and long/short-term waste management plans for metropolitan cities in low-income countries. To validate the sustainability judgments based on performance indices, the analytical hierarchy process (AHP), a multi-criteria decision analysis (MCDA) tool commonly used for ranking policy decisions based on competing criteria, was employed. It considered the same four criteria as in the SD model. The results of the AHP analysis aligned with those of the SD model, ranking the UFAC scenario as the most sustainable option.


Subject(s)
Refuse Disposal , Waste Management , Humans , Solid Waste/analysis , Waste Management/methods , Recycling , Waste Disposal Facilities , Cities , Refuse Disposal/methods
4.
Environ Sci Technol ; 57(48): 19602-19611, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37955401

ABSTRACT

Renewable liquid fuels production from landfill waste provides a promising alternative to conventional carbon-intensive waste management methods and has the potential to contribute to the transition toward low-carbon fuel pathways. In this work, we investigated the life cycle greenhouse gas (GHG) emissions of producing Fischer-Tropsch diesel from landfill gas (LFG) using the TriFTS catalytic conversion process and compared it to fossil-based petroleum diesel. A life cycle-based comparison was made between TriFTS diesel and other LFG waste management pathways, LFG-to-Electricity and LFG-to-Compressed renewable natural gas (RNG), on a per kilogram of feedstock basis as well as on a per MJ of energy basis, which also included the LFG-to-Direct Combustion pathway. The study considered flaring of LFG as the common underlying counterfactual scenario for all of the waste-to-energy product pathways. We estimated the life cycle GHG emissions for TriFTS diesel to be -36.4 carbon dioxide equivalent (grams CO2e)/MJ which is significantly lower than its fossil fuel counterpart which was estimated to be 90.5 g CO2e/MJ on a cradle-to-grave basis. The life cycle emission results from both perspectives (per kg feedstock and per MJ energy output) show that TriFTS diesel is a viable alternative energy pathway from LFG when compared to other pathways, primarily due to the main product being a renewable fuel that can serve as a drop-in fuel for diesel-based uses, within both the waste industry as well as the larger market. Further sensitivity analysis was performed based on the production of TriFTS diesel with the counterfactual waste management scenario of LFG-to-Flaring as well as the alternative LFG-to-Electricity waste management pathway. The sensitivity of the carbon intensity for TriFTS diesel to flaring efficiency and the carbon intensity of the electricity grid were also investigated. The study highlights the potential for the TriFTS conversion process technology to contribute to the waste industry's closed loop and decarbonization initiatives and to provide low carbon fuel for transportation.


Subject(s)
Greenhouse Gases , Petroleum , Carbon Dioxide/analysis , Waste Disposal Facilities , Natural Gas , Greenhouse Effect
5.
Environ Sci Technol ; 57(50): 21113-21123, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37932027

ABSTRACT

There is growing interest in better understanding the environmental impacts of landfills and optimizing their operation. Accordingly, we developed a holistic framework to calculate a landfill's Ecological Footprint (EF) and applied that to the Fargo, North Dakota, landfill. Parallelly, the carbon footprint and biocapacity of the landfill were calculated. We calculated the EF for six scenarios (i.e., cropland, grazing land, marine land, inland fishing ground, forest land, and built land as land types) and six operational strategies typical for landfills. Operational strategies were selected based on the variations of landfill equipment, the gas collection system, efficiency, the occurrence of fugitive emissions, and flaring. The annual EF values range from 124 to 213,717 global hectares depending on land type and operational strategy. Carbon footprints constituted 28.01-99.98% of total EF, mainly driven by fugitive emissions and landfill equipment. For example, each percent increase in Fargo landfill's fugitive emissions caused the carbon footprint to rise by 2130 global hectares (4460 tons CO2e). While the landfill has biocapacity as grazing grass in open spaces, it remains unused/inaccessible. By leveraging the EF framework for landfills, operators can identify the primary elements contributing to a landfill's environmental impact, thereby minimizing it.


Subject(s)
Refuse Disposal , Triallate , North Dakota , Forests , Waste Disposal Facilities , Carbon Footprint
6.
J Environ Radioact ; 262: 107140, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36947907

ABSTRACT

Field measurements of Rn-222 fluxes from the tops and bottoms of compacted clay radon barriers were used to calculate effective Rn diffusion coefficients (DRn) at four uranium waste disposal sites in the western United States to assess cover performance after more than 20 years of service. Values of DRn ranged from 7.4 × 10-7 to 6.0 × 10-9 m2/s, averaging 1.42 × 10-7. Water saturation (SW) from soil cores indicated that there was relatively little control of DRn by SW, especially at higher moisture levels, in contrast to estimates from most steady-state diffusion models. This is attributed to preferential pathways intrinsic to construction of the barriers or to natural process that have developed over time including desiccation cracks, root channels, and insect burrows in the engineered earthen barriers. A modification to some models in which fast and slow pathway DRn values are partitioned appears to give a good representation of the data; 4% of the fast pathway was needed to fit the data regression. For locations with high Sw and highest DRn (and fluxes) at each site, the proportion of fast pathway ranged from 1.7% to 34%, but for many locations with lower fluxes, little if any fast pathway was needed.


Subject(s)
Radiation Monitoring , Radon , Uranium , Radon/analysis , Diffusion , Waste Disposal Facilities
7.
J Environ Manage ; 336: 117727, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36924707

ABSTRACT

The most frequent strategy for solid waste management, adopted across the globe is landfill. Through microbial decomposition municipal solid waste degrades, producing end products such as carbon dioxide, methane, volatile organic compounds, and leachate. High levels of organic waste and heavy metals content in leachate can cause pervasive damage to the ecosystem and contaminate groundwater. Leachate requires extensive treatment before being released into the environment because of its complex chemical composition and identifying the appropriate technologies for leachate treatment remains a key problem for municipal landfill operations. Given the possible harm caused by substantially contaminated leachate, it should adhere to stricter quality criteria for direct disposal of leachate and one treatment method cannot efficiently tackle all the pollutants. In order to reduce the landfill leachates high fouling power, pre-treatment of landfill leachate is necessary. The study provides a comprehensive review of pre-treatment technologies, as well as a critical assessment of strengths and limitations. Current review-based analysis was undertaken based on the filtered 395 papers published for science mapping and to evaluate the qualitative studies in the area of pre-treatment of Landfill Leachate till 2022. A three-step process was employed to conduct bibliometric analysis, qualitative valuation, and identification of influential and productive journals, countries, researchers and articles, emerging technology, and outlining some of the major research gaps in the research field.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Refuse Disposal/methods , Ecosystem , Environmental Monitoring/methods , Solid Waste/analysis , Waste Disposal Facilities
8.
J Environ Manage ; 335: 117518, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36841005

ABSTRACT

Holistically considering the current situation of the commercial synthetic fertilizer (CSF) market, recent global developments, and future projection studies, dependency on CSFs in agricultural production born significant risks, especially to the food security of foreign-dependent countries. The foreign dependency of countries in terms of CSFs can be reduced by the concepts such as the circular economy and resource recovery. Recently, waste streams are considered as a source in order to produce recovery-based fertilizers (RBF). RBFs produced from different waste streams can be substituted with CSFs as input for agricultural applications. Municipal solid waste leachate (MSWL) is one of the waste streams that have a high potential for RBF production. Distribution of the published papers over the years shows that this potential was noticed by more researchers in the millennium. MSWL contains a remarkable amount of nitrogen and phosphorus which are the main nutrients required for agricultural production. These nutrients can be recovered with many different methods such as microalgae cultivation, chemical precipitation, ammonia stripping, membrane separation, etc. MSWL can be generated within the different phases of municipal solid waste (MSW) management. Although it is mainly composed of landfill leachate (LL), composting plant leachate (CPL), incineration plant leachate (IPL), and transfer station leachate (TSL) should be considered as potential sources to produce RBF. This study compiles studies conducted on MSWL from the perspective of nitrogen and phosphorus recovery. Moreover, recent developments and limitations of the subject were extensively discussed and future perspectives were introduced by considering the entire MSW management. Investigated studies in this review showed that the potential of MSWL to produce RBF is significant. The outcomes of this paper will serve the countries for ensuring their food security by implementing the resource recovery concept to produce RBF. Thus, the risks born with the recent global developments could be overcome in this way besides the positive environmental outcomes of resource recovery.


Subject(s)
Refuse Disposal , Waste Management , Water Pollutants, Chemical , Solid Waste/analysis , Waste Management/methods , Incineration , Nitrogen , Phosphorus , Water Pollutants, Chemical/analysis , Fertilizers , Waste Disposal Facilities , Refuse Disposal/methods
9.
Article in English | MEDLINE | ID: mdl-36231352

ABSTRACT

Heavy metals are unbreakable, and most of them are poisonous to animals and people. Metals are particularly concerning among environmental contaminants since they are less apparent, have extensive effects on ecosystems, are poisonous, and bioaccumulate in ecosystems, biological tissues, and organs. Therefore, there is a need to use biological agents and phytoremediation processes such as enzymes because they have a high potential for effectively transforming and detoxifying polluting substances. They can convert pollutants at a detectable rate and are potentially suitable for restoring polluted environments. We investigated heavy metal concentrations in different soil samples collected in four sections in Alice and determined the enzyme activity levels present in the soil. The Pearson correlation analysis was conducted to check whether there was any relationship between heavy metal concentrations and enzyme activities in the soil. Samples were randomly collected in three weeks, and the microwave digestion method was used for sample treatment and preparation. Quantitation was achieved by inductively coupled plasma mass spectrometry (ICP-MS). The enzyme assay through incubation method was implemented for discovering the four selected enzymes (urease, invertase, catalase, and phosphatase), and their activity levels were examined colorimetrically by colorimetry spectrophotometer. The ICP-MS results revealed 16 predominating elements, namely: Al, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Sr, and Zn, and the presence of a non-mental, which is phosphorus (P), and a metalloid in the form of silicon (Si) in all soil samples. Significant differences in metal concentrations were observed among the collection sites. The Al, Fe, K, Mg, and Ca concentrations were above WHO's permissible limits. While Ba, Mn, Na, and P were in moderate concentration, Cu, Cr, Co, Zn, Sr, and Ni were in small amounts recorded mostly below the permissible values from WHO. Four soil enzyme activities were determined successfully (urease, invertase, phosphatase, and catalase). A negative non-significant correlation existed between urease, invertase, phosphatase enzyme activity, and the concentration levels of all selected metals (Al, Ba, Ca, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Cr, Sr, and Zn. In contrast, the content of catalase activity was associated non-significantly but positively with the range of selected heavy metals. This study suggests proper monitoring of residences' areas, which can provide detailed information on the impact of high heavy metal content on people's health. They are easily dispersed and can accumulate in large quantities in the soil. The necessary implementation of waste management programs will help the municipality adopt a strategy that will promote recycling programs and protect the residence health from this threat.


Subject(s)
Environmental Pollutants , Metals, Heavy , Soil Pollutants , Biological Factors , Catalase , Ecosystem , Environmental Monitoring/methods , Environmental Pollutants/analysis , Metals, Heavy/analysis , Phosphoric Monoester Hydrolases , Phosphorus/analysis , Silicon/analysis , Soil/chemistry , Soil Pollutants/analysis , South Africa , Urease , Waste Disposal Facilities , beta-Fructofuranosidase
10.
J Environ Manage ; 323: 116238, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36115241

ABSTRACT

Despite studies encouraging sustainable waste management, most municipal wastes remain in landfills, particularly in developing countries. Lack of holistic planning and national policy alignment might impair the waste management facility implementation. Policy-driven waste treatment scenarios should be designed to strongly link to the local conditions when assessing the eco-efficiency impacts of the waste management system. Taking Malaysia as a case study, a relative quadrant life cycle eco-efficiency indicator is developed to investigate the eco-efficiency of waste treatment scenarios. The relative quadrant life cycle eco-efficiency indicator depicts the eco-efficiency of various waste management scenarios. Compared with Scenario S1 - business-as-usual (i.e., 71.5% open landfill, 10% sanitary landfill, 1% composting, 17.5% recycling), five waste treatment scenarios (S2-S6) are designed based on Malaysia's existing and future policy targets. Scenario S5 (15.5% sanitary landfill, 22.25% composting, 22.25% anaerobic digestion, 40% recycling) and Scenario S6 (5% sanitary landfill, 22.25% composting, 22.25% anaerobic digestion, 40% recycling, 10.5% incineration) demonstrate that the 40% recycling rate is 32.9-33.6 times more environmentally favorable and 10-20% more economically viable than business-as-usual. Another four scenarios (NS1-NS4) are designed to investigate zero waste in landfills and the need to implement incineration or material recovery. Scenario NS3 suggests increasing incineration capacity to 33% could be an option should incineration is implemented. Adopting home or centralized windrow composting and increasing 2.5-5.5 times of current Feed-in Tariff rates are recommended to improve the eco-efficiency of the waste treatment scenarios. This study could facilitate policymakers to set waste minimization targets and incentives through various scenarios via sensitivity and comparative analyses.


Subject(s)
Refuse Disposal , Waste Management , Incineration , Malaysia , Policy , Solid Waste/analysis , Waste Disposal Facilities
11.
Waste Manag ; 150: 227-243, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35863171

ABSTRACT

This study investigated two approaches for managing Waste-to-Energy (WTE) fly ash (FA): (i) phosphoric acid stabilization of FA and disposal in non-hazardous landfills, so that it can pass the U.S. TCLP procedure and meet the U.S. Resource Conservation and Recovery Act (RCRA) standards; (ii) use of FA or phosphoric acid stabilized fly ash (PFA) as cement substitute in construction for avoiding disposal in landfills and reducing the consumption of Portland cement. The effect of stabilization was identified by TCLP tests and XRD quantification (QXRD), which showed that the economically optimal concentration for PFA to pass the RCRA was 1 mol/L H3PO4 (equivalent to 0.4 mol of H3PO4/kg of FA). Zn/Pb-phosphates were formed in treated ash by using high concentration H3PO4 (e.g., 3 mol/L). Thus, the hazardous FA was chemically stabilized to PFA, that were both discussed as cement substitute. QXRD and SEM results showed that both FA and PFA (1 mol/L H3PO4) chemically reacted with cement and water. Up to 25 vol% of the cement can be replaced by FA or PFA, with similar mechanical performance of cement mortars than that of reference. Testing by LEAF Method 1313-pH dependence showed that the FA and PFA cement mortars exhibited the same leachability of heavy metals; therefore, this study demonstrated the technical feasibility of utilizing either raw FA or stabilized PFA as supplementary cementitious material. The leachability of heavy metals in optimal FA or PFA 25 vol% cement mortar was under the U.K. WAC non-hazardous limits.


Subject(s)
Metals, Heavy , Refuse Disposal , Carbon , Coal Ash , Construction Materials , Incineration , Particulate Matter , Phosphates , Refuse Disposal/methods , Waste Disposal Facilities
12.
World J Microbiol Biotechnol ; 38(8): 140, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35705700

ABSTRACT

Municipal landfills are known for methane production and a source of nitrate pollution leading to various environmental issues. Therefore, this niche was selected for the isolation of one-carbon (C1) utilizing bacteria with denitrifying capacities using anaerobic enrichment on nitrate mineral salt medium supplemented with methanol as carbon source. Eight axenic cultures were isolated of which, isolate AAK/M5 demonstrated the highest methanol removal (73.28%) in terms of soluble chemical oxygen demand and methane removal (41.27%) at the expense of total nitrate removal of 100% and 33% respectively. The whole genome characterization with phylogenomic approach suggested that the strain AAK/M5 could be assigned to Pseudomonas aeruginosa with close neighbours as type strains DVT779, AES1M, W60856, and LES400. The circular genome annotation showed the presence of complete set of genes essential for methanol utilization and complete denitrification process. The study demonstrates the potential of P. aeruginosa strain AAK/M5 in catalysing methane oxidation thus serving as a methane sink vis-à-vis utilization of nitrate. Considering the existence of such bacteria at landfill site, the study highlights the need to develop strategies for their enrichment and designing of efficient catabolic activity for such environments.


Subject(s)
Soil , Solid Waste , Bacteria/metabolism , Carbon/metabolism , Denitrification , Genomics , Methane/metabolism , Methanol/metabolism , Nitrates/metabolism , Oxidation-Reduction , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Soil/chemistry , Waste Disposal Facilities
13.
PLoS One ; 17(1): e0262275, 2022.
Article in English | MEDLINE | ID: mdl-35025937

ABSTRACT

The safe disposal of high-level radioactive waste in a deep geological repository is a huge social and technical challenge. So far, one of the less considered factors needed for a long-term risk assessment, is the impact of microorganisms occurring in the different host rocks. Even under the harsh conditions of salt formations different bacterial and archaeal species were found, e. g. Halobacterium sp. GP5 1-1, which has been isolated from a German rock salt sample. The interactions of this archaeon with uranium(VI), one of the radionuclides of major concern for the long-term storage of high-level radioactive waste, were investigated. Different spectroscopic techniques, as well as microscopy, were used to examine the occurring mechanisms on a molecular level leading to a more profound process understanding. Batch experiments with different uranium(VI) concentrations showed that the interaction is not only a simple, but a more complex combination of different processes. With the help of in situ attenuated total reflection Fourier-transform infrared spectroscopy the association of uranium(VI) onto carboxylate groups was verified. In addition, time-resolved laser-induced luminescence spectroscopy revealed the formation of phosphate and carboxylate species within the cell pellets as a function of the uranium(VI) concentration and incubation time. The association behavior differs from another very closely related halophilic archaeon, especially with regard to uranium(VI) concentrations. This clearly demonstrates the importance of studying the interactions of different, at first sight very similar, microorganisms with uranium(VI). This work provides new insights into the microbe-uranium(VI) interactions at highly saline conditions relevant to the long-term storage of radioactive waste in rock salt.


Subject(s)
Halobacterium/radiation effects , Radioactive Waste/adverse effects , Uranium/adverse effects , Adsorption , Archaea/metabolism , Archaea/radiation effects , Bacteria , Halobacterium/metabolism , Hydrogen-Ion Concentration , Microscopy/methods , Spectrometry, Fluorescence/methods , Spectroscopy, Fourier Transform Infrared/methods , Waste Disposal Facilities
14.
Sci Total Environ ; 807(Pt 1): 150747, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34619188

ABSTRACT

Extensive use of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) has generated great concern about their adverse effects on environmental and ecological safety and human health. As well as emissions during use of products containing such chemicals, there are mounting concerns over emissions when such products reach the waste stream. Here, we review the available data on contamination with HFRs and OPEs arising from formal waste treatment facilities (including but not limited to e-waste recycling, landfill, and incinerators). Evidence of the transfer of HFRs and OPEs from products to the environment shows that it occurs via mechanisms such as: volatilisation, abrasion, and leaching. Higher contaminant vapour pressure, increased temperature, and elevated concentrations of HFRs and OPEs in products contribute greatly to their emissions to air, with highest emission rates usually observed in the early stages of test chamber experiments. Abrasion of particles and fibres from products is ubiquitous and likely to contribute to elevated FR concentrations in soil. Leaching to aqueous media of brominated FRs (BFRs) is likely to be a second-order process, with elevated dissolved humic matter and temperature of leaching fluids likely to facilitate such emissions. However, leaching characteristics of OPEs are less well-understood and require further investigation. Data on the occurrence of HFRs and OPEs in outdoor air and soil in the vicinity of formal e-waste treatment facilities suggests such facilities exert a considerable impact. Waste dumpsites and landfills constitute a potential source of HFRs and OPEs to soil, and improper management of waste disposal might also contribute to HFR contamination in ambient air. Current evidence suggests minimal impact of waste incineration plants on BFR contamination in outdoor air and soil, but further investigation is required to confirm this.


Subject(s)
Flame Retardants , Environmental Monitoring , Esters , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Humans , Organophosphates , Soil , Waste Disposal Facilities
15.
Sci Total Environ ; 816: 151541, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34774629

ABSTRACT

Food waste is a universal problem in many countries. In line with Sustainable Development Goals 7 and 12, it is crucial to identify a cost-effective food waste valorization management framework with the least human health and environmental impacts. However, studies on the synergistic effect of life cycle assessment and mathematical optimization interconnected with human health, environment, and economic are relatively few and far between; hence they cannot provide holistic recommendations to policymakers in developing environmental and economic feasibility of food waste management frameworks. Taking Malaysia as a case study, this study proposes a simple and deterministic model that integrates life cycle assessment and multi-objective mathematical optimization to unpack the health-environment-economic wellbeing nexus in food waste management sector. The model evaluates the life cycle human health, environmental, and economic impacts of five food waste disposal and valorization technologies: open landfill, sanitary landfill, aerated windrow composting, high-temperature drying sterilization, and anaerobic digestion, and identifies the optimal food waste valorization configuration solution in Malaysia. Based on the results modeled by SimaPro 9.0 and General Algebraic Modeling System with augmented ε-constraint, valorization of food waste into electricity via anaerobic digestion is the most favorable option, with 146% and 161% reduction of human health and ecosystems, respectively, as compared with open landfill. If cost is combined as an objective function with human health and ecosystems, high-temperature drying sterilization is the most attractive scenario due to the high livestock feed revenue. Among the 10 Pareto-optimal solutions, 9% sanitary landfill, 3% aerated windrow composting, 30% high-temperature drying sterilization, 30% anaerobic digestion to electricity, and 28% anaerobic digestion to cooking gas, is recommended as future food waste management configuration. The sensitivity results demonstrate that prices of electricity, cooking gas, and livestock feed affect the optimal configuration food waste management system.


Subject(s)
Refuse Disposal , Waste Management , Animals , Ecosystem , Environment , Food , Humans , Life Cycle Stages , Solid Waste/analysis , Waste Disposal Facilities
16.
Sci Total Environ ; 799: 149339, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34426359

ABSTRACT

This study assessed the potential for minimizing human excreta bound phosphorus (P) loss through used disposable baby nappies, an area that remained unexplored for nations. Accordingly, it performed a substance flow analysis to assess the national P loss through used disposable baby nappies in the case of Australia. The analysis revealed that approximately 308 tonne P is lost through used baby nappies to landfills in Australia in 2019, which is nearly 2.5% of the overall P excreta as human waste. Although the quantity seems small in percentage term, it could result in the loss of a significant amount of P over several years, as assessed 5452 tonne P over the 2001-2019 period, which is concerning in the context of anticipated future global P scarcity. The review of peer-reviewed literature on available technologies/methods for recycling disposable baby nappy waste indicates that there are some technologies for recycling P particularly through co-composting with food and other organic wastes, while the majority of these are still at the lab/pilot scale. There are also various recycling techniques with purpose ranging from energy recovery to volume reduction, generation of pulp, hydrogel, cellulose, and polymer as well as to increase yield stress and viscosity of concrete, however, these are not effective in P recovery. The study implies that compost made of nappy waste can be used as fertilizer to produce bamboo, cotton, and maize plants to supply raw materials for producing biodegradable nappies, hence, to close the loop. The various product and system design options e.g., designing for flushing, designing for disassembling the excreta containing part, and designing for community composting suggested in this study could be further researched for identifying best suitable option to achieve P circular economy of disposable baby nappies. This study also recommends necessary interventions at various stages of the nappy life cycle to ensure sustainable management of phosphorus.


Subject(s)
Composting , Waste Management , Humans , Phosphorus , Polymers , Recycling , Waste Disposal Facilities
17.
Arch Microbiol ; 203(8): 5075-5084, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34302508

ABSTRACT

Bioremediation through biodegradation is applied for cleaning up several environmental pollutions including petroleum oil spill containing petrol, diesel, mobil, kerosene, lubricating, etc. which have devastated several endangered terrestrial and aquatic ecosystems. Therefore, the current research was aimed to isolate and identify diesel degrading bacteria from the petroleum waste dumping site and determined their degrading efficiency. The bacterial strains were isolated through a minimum salt medium supplemented with 2% diesel as the sole carbon source. The bacteria were identified by morphological, biochemical characterization, and 16S rRNA gene sequencing. The optimized growth pattern was evaluated by utilization of a wide range of temperatures (25, 30, 35, and 40 °C) and pH (5,6,7 and 8) as well as different concentrations of diesel (2, 3, 5and 7%). Finally, the degradation rate was determined by measuring the residual diesel after 7, 14, and 21 days of incubation. The study isolated Enterobacter ludwigii, Enterobacter mori, Acinetobacter baumannii, and Cedecea davisae where all are gram-negative rod-shaped bacilli. All the bacterial strains utilized the diesel at their best at 30 °C and pH 7, among them, A. baumannii and C. davisae exhibited the best degrading efficiency at all applied concentrations. Finally, the determination of degradation rate (%) through gravimetrical analysis has confirmed the potency of A. Baumannii and C. davisae where the degradation rate was around 61 and 52% respectively after 21 days of incubation period with 10% diesel. The study concludes that all of those isolated bacterial consortiums, especially A. baumannii and C. davisae could be allocated as active agents used for bioremediation to detoxify the diesel-containing contaminated sites in a cost-effective and eco-friendly way.


Subject(s)
Acinetobacter , Petroleum , Soil Pollutants , Acinetobacter/genetics , Biodegradation, Environmental , Ecosystem , Enterobacter/genetics , Enterobacteriaceae , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Waste Disposal Facilities
18.
Chemosphere ; 279: 130632, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34134423

ABSTRACT

The accumulated bauxite mine soil had an acidic pH of 5.52 ± 0.12 and more heavy metals such as Cr, Cd, Zn, and Pb, which can cause severe soil and water pollution to the nearby farmlands and water reservoirs. Hence, the work was designed to find the possibility of reclamation of bauxite mine soil through Crotalaria juncea with the amalgamation of native metal degrading bacterial isolates. Out of 15 bacterial cultures, only 2 isolates (B3 and B14) showed excellent metal tolerance (for up to 750 mg L-1), solubilizing (15.27-38.7 mg kg-1) (including phosphate: 47.4 ± 1.79%), and degrading potential (22.8 ± 0.89 to 31.5 ± 1.6%) than the others. These B3 and B14 isolates were recognized as B. borstelensis UTM105 (1432 bp) and B. borstelensis AK2 (1494 bp) through molecular characterization. These isolates have produced a metal stress response protein (205-43 KDa molecular weight protein) during metal stress conditions. The phytoremediation competence of C. juncea under the influence of these bacterial isolates was assessed with various treatment (I-IV) schemes. The treatment IV (C. juncea with two bacterial isolates) showed substantial physiological and biochemical results compared with the control and the other treatments. The phytoremediation competence of C. juncea was also effective in treatment IV than the others. It reduced and extracted a reasonable quantity of metals from the bauxite mine soil. The intact results accomplished that these native metals tolerant, solubilizing, and degrading bacterial isolates, could be used as optimistic bacterial candidates in combination with C. juncea for the effective reclamation of metal enriched bauxite mine soil.


Subject(s)
Crotalaria , Metals, Heavy , Soil Pollutants , Aluminum Oxide , Bacteria , Biodegradation, Environmental , Metals, Heavy/analysis , Mustard Plant , Soil , Soil Pollutants/analysis , Waste Disposal Facilities
19.
Environ Sci Pollut Res Int ; 28(40): 56053-56068, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34046836

ABSTRACT

A human health risk assessment (HHRA) will not remain simple and straightforward when it involves multiple uncertain input variables. Uncertainties in HHRA result from the unavailability and subjectivity of input variables. Though several studies have performed HHRA, the quantification of uncertainty in HHRA under a situation of data scarcity and the simultaneous application of random and non-random input variables have rarely been reported. The present study proposes an integrated hybrid health risk modeling framework involving the concurrent treatment of random and non-random input variables and estimating the uncertainties linked to the input variables in HHRA. The proposed framework presents the flexibility to classify the input variables into fuzzy and probabilistic categories, based on their data availability and provenience nature. The framework is demonstrated over the Turbhe sanitary landfill in Navi Mumbai, India, where the fate and transport of heavy metals in leachate are investigated through LandSim modeling. The present study considers the LandSim-simulated heavy metal concentration and body weight as a random variable and water intake, exposure duration, frequency, bioavailability, and average time as fuzzy variables. Further, the uncertainties in the non-carcinogenic human health risk have been quantified using Monte Carlo simulations, followed by a comprehensive multivariate sensitivity analysis of the proposed framework. High health risk at Turbhe is estimated for the male and female population. This study presents the first effort to quantify the non-carcinogenic human health risks from leachate-contaminated groundwater considering the health risk input variables as non-deterministic. The proposed framework is generic and applicable to any landfill site and will remain unaltered when integrated health risk assessment and uncertainty assessment are performed for the landfill.


Subject(s)
Environmental Monitoring , Groundwater , Female , Humans , Male , Risk Assessment , Uncertainty , Waste Disposal Facilities
20.
Waste Manag ; 125: 249-256, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33713870

ABSTRACT

Environmental damage cost can measure the impact of pollution caused by human activity on final safeguard subjects from endpoint perspective. Application of environmental damage cost to municipal solid waste (MSW) management is still rare. To fill such a research gap, this study established a MSW environmental damage cost assessment method using Life Cycle Impact Assessment Method based on Endpoint (LIME) model. Four types of environmental damage cost, namely, primary productivity, social assets, biodiversity and human health for waste treatment were investigated in the city of Shanghai. Results show that the environmental damage cost was 113.7, 116.9, 140.0, 144.0 and 170.8 million dollars in Shanghai from 2014 to 2018, respectively. Damage cost of social assets was the dominant component, accounting for about 55%. Landfill mainly caused social assets damage cost, while incineration mainly caused human health damage cost. Scenarios analysis further revealed that after implementing MSW separation, the total environmental damage cost could be reduced by about 1/3. The best MSW treatment method is fermentation, followed by compost, incineration and landfill, with unit environmental damage cost being 0.22, 4.51, 16.04 and 23.47 USD/ton, respectively.


Subject(s)
Refuse Disposal , Waste Management , China , Cities , Humans , Incineration , Solid Waste/analysis , Waste Disposal Facilities
SELECTION OF CITATIONS
SEARCH DETAIL