Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 381
Filter
Add more filters

Publication year range
1.
J Ethnopharmacol ; 328: 118103, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38527573

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hedychium coccineum rhizome is an anti-inflammatory ethnomedicine used to remedy inflammation-related swelling and bronchial asthma. AIM OF THE STUDY: The study aimed to analyze the phytochemical constituents of H. coccineum rhizome essential oil (EO) and evaluate its in vitro and in vivo anti-inflammatory effects and underlying mechanisms. MATERIALS AND METHODS: Phytochemical constituents of H. coccineum rhizome EO were analyzed using GC-FID/MS. In RAW264.7 macrophages induced by LPS, blockade of PGE2, NO, IL-1ß, IL-6, and TNF-α secretion by H. coccineum rhizome EO was measured, and then Western blot, qRT-PCR, and immunofluorescent staining were used to evaluate its underlying mechanisms. Moreover, we used the xylene-induced ear edema model for testing anti-inflammatory potential in vivo and examined auricular swelling as well as tissue and serum contents of IL-1ß, IL-6, and TNF-α. RESULTS: EO's main components were E-nerolidol (40.5%), borneol acetate (24.8%), spathulenol (4.5%), linalool (3.8%), elemol (3.5%), and borneol (3.4%). In RAW264.7 cells stimulated by LPS, EO downregulated the expression of pro-inflammatory enzyme (iNOS and COX-2) genes and proteins, thereby suppressing pro-inflammatory mediators (NO and PGE2) secretion. Simultaneously, it reduced TNF-α, IL-1ß, and IL-6 release by downregulating their mRNA expression. Besides, H. coccineum EO attenuated LPS-stimulated activation of NF-κB (by reducing IκBα phosphorylation and degradation to inhibit NF-κB nuclear translocation) and MAPK (by downregulating JNK, p38, and ERK phosphorylation). In xylene-induced mouse ear edema, EO relieved auricular swelling and lowered serum and tissue levels of TNF-α, IL-1ß, and IL-6. CONCLUSIONS: H. coccineum EO had powerful in vivo and in vitro anti-inflammatory effects by inhibiting MAPK and NF-κB activation. Hence, H. coccineum EO should have great potential for application in the pharmaceutical field as a novel anti-inflammatory agent.


Subject(s)
Camphanes , Oils, Volatile , Zingiberaceae , Animals , Mice , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Rhizome/metabolism , Oils, Volatile/adverse effects , Lipopolysaccharides/pharmacology , Xylenes , Anti-Inflammatory Agents/adverse effects , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , RAW 264.7 Cells , Edema/chemically induced , Edema/drug therapy , Phytochemicals/therapeutic use , Zingiberaceae/metabolism
2.
J Ethnopharmacol ; 326: 117964, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38401663

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ammodaucus leucotrichus Coss. & Durieu (Apiaceae) is traditionally used in southern Algeria as a remedy against a wide range of disease due to its health-promoting properties. AIM OF THE STUDY: To investigate anti-oxidant and anti-inflammatory potentials of plant methanolic extract and its fractions in vitro and in vivo. MATERIALS AND METHODS: Anti-radical activity was assessed in vitro using ABTS•+, superoxide anion (O2•-) and nitric oxide radical (•NO). Lipid peroxidation inhibition was also investigated in the linoleic acid system. Enzyme inhibition assay was performed against α-amylase and α-glucosidase. The anti-inflammatory effect of extracts was screened in vitro through thermal induction of human serum albumin, and in vivo on a skin acute inflammation model induced by λ-carrageenan paw injection, xylene and croton oil topical application. Analgesic effect was evaluated by acetic acid-induced writhing test. RESULTS: The highest contents of polyphenols and flavonoids was recorded by the crude extract (77.14 ± 0.01 µg GAE/mg E and 19.59 ± 0.08 µg QE/mg E, respectively). Among the extracts, ethyl acetate extract showed a promising anti-radical activity of ABTS•+, O2•- and •NO, in addition to a remarkable inhibition activity of the tested enzymes. Meanwhile, all extracts effectively protected linoleic acid against lipid peroxidation and human serum albumin structure in thermal condition even at low concentration (0.31 mg/ml). Oral administration of 200 mg/kg of crude extract successfully inhibited acetic acid induced nociception and reduced edema formation induced by xylene and carrageenan. However, a dose-dependent manner was observed to decrease ear edema by a microscopic examination in croton oil induced acute inflammation. Nitrite and malondialdehyde levels together with catalase activity were modulated in the presence of plant-derived bioactive compounds. CONCLUSIONS: This study showed that Ammodaucus leucotrichus is potentially rich source of anti-oxidant and anti-inflammatory bioactive compounds.


Subject(s)
Antioxidants , Benzothiazoles , Sulfonic Acids , Xylenes , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Croton Oil , Linoleic Acid , Phytotherapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Carrageenan , Acetic Acid/therapeutic use , Inflammation , Edema/chemically induced , Edema/drug therapy , Seeds , Serum Albumin, Human , Analgesics/pharmacology
3.
Chemosphere ; 351: 141251, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253084

ABSTRACT

This study presents the catalytic pyrolysis of microalgae, Chlorella vulgaris (C. vulgaris), using pure CH4 and H2-rich gas evolved from CH4 decomposition on three different HZSM-5 catalysts loaded with Zn, Ga, and Pt, aimed specifically at producing high-value mono-aromatics such as benzene, toluene, ethylbenzene, and xylene (BTEX). In comparison with that for the typical inert N2 environment, a pure CH4 environment increased the bio-oil yield from 32.4 wt% to 37.4 wt% probably due to hydrogen and methyl radical insertion in the bio-oil components. Furthermore, the addition of bimetals further increased bio-oil yield. For example, ZnPtHZ led to a bio-oil yield of 47.7 wt% in pure CH4. ZnGaHZ resulted in the maximum BTEX yield (6.68 wt%), which could be explained by CH4 activation, co-aromatization, and hydrodeoxygenation. The BTEX yield could be further increased to 7.62 wt% when pyrolysis was conducted in H2-rich gas evolved from CH4 decomposition over ZnGaHZ, as rates of aromatization and hydrodeoxygenation were relatively high under this condition. This study experimentally validated that the combination of ZnGaHZ and CH4 decomposition synergistically increases BTEX production using C. vulgaris.


Subject(s)
Chlorella vulgaris , Microalgae , Plant Oils , Polyphenols , Hot Temperature , Pyrolysis , Toluene , Benzene , Xylenes , Catalysis , Zinc , Biofuels
4.
J Ethnopharmacol ; 321: 117499, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38042392

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Corydalis tomentella Franch. is a perennial cespitose plant commonly used to treat stomachaches as a folk medicine. The C. tomentella total alkaloids have good protective effects against acute liver injury and potential anti-hepatoma and anti-Alzheimer's disease activities. AIM OF THE STUDY: To establish an effective purification process for total alkaloids from C. tomentella and investigate the mechanism of their anti-inflammatory effects. MATERIALS AND METHODS: Corydalis tomentella were purified using macroporous resin. Then the crude and purified C. tomentella extracts (cCTE and pCTE) were qualitatively analyzed using UPLC-Triple-TOF-MS/MS. The cCTE and pCTE were used to investigate and compare their anti-inflammatory effects on lipopolysaccharide (LPS)-induced RAW264.7 cells. Doses at 100, 200 and 400 mg/kg/d of pCTE were used to study their anti-inflammatory and analgesic activities in mice with xylene-induced ear swelling and acetic acid-induced writhing tests. Content of nitric oxide (NO), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) were determined both in RAW264.7 cells and mice. Network pharmacology was used to predict the anti-inflammatory mechanism of C. tomentella, and the key enzymes were validated using qPCR and Western Blot analysis. Concentration of intracellular Ca2+ was detected using flow cytometric analysis. RESULTS: The C. tomentella total alkaloid purity increased from 6.29% to 47.34% under optimal purification conditions. A total of 54 alkaloids were identified from CTE. Both cCTE and pCTE could suppress the LPS-induced production of NO, IL-6, IL-1ß, and TNF-α in RAW264.7 cells. The pCTE exhibited a more potent anti-inflammatory effect; it also inhibited pain induced by xylene and acetic acid in mice. The calcium signaling pathway is associated with the anti-inflammatory and analgesic activities of C. tomentella. The mRNA expression of nitric oxide synthase (NOS) 2, NOS3 and calmodulin1 (CALM1) was regulated by C. tomentella through the reduction of inflammation-induced Ca2+ influx, and it also exhibited a more pronounced effect than the positive control (L-NG-nitro arginine methyl ester). CONCLUSIONS: Purified C. tomentella extract shows anti-inflammatory effect both in vitro and in vivo. It exerts anti-inflammatory and analgesic effects through the calcium signaling pathway by down-regulating NOS2 and CALM1 expression and up-regulating NOS3 expression in LPS-induced RAW264.7 cells, and decreasing intracellular Ca2+ concentration.


Subject(s)
Alkaloids , Corydalis , Mice , Animals , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Xylenes , Calcium Signaling , Tandem Mass Spectrometry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Acetates , Nitric Oxide/metabolism
5.
J Ethnopharmacol ; 322: 117561, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38072290

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Syringa Pubescens Turcz. (SP), a member of the Oleaceae family, is a species of plant known as Syringa. Flowers, as the medicinal part, are commonly used in the treatment of hepatitis and tonsillitis. AIM OF THE STUDY: The research was the first to assess the antioxidant and anti-inflammatory potential of different parts of SP flowers (SPF) in vitro. The most promising fraction was ethyl acetate fraction of SP flower (SPFEA). The antioxidant, anti-inflammatory and analgesic activities of SPFEA were further studied, and the chemical components were identified. METHODS: HPLC was used to identify the major components in various fraction of SPF. DPPH and ABTS + radical scavenging assays as well as FRAP test and ß-carotene bleaching test were employed to assess the antioxidant potential of SPF fraction in vitro. The inhibitory effect on NO production in LPS-treated RAW264.7 cells and heat-induced protein denaturation test were used to evaluate the anti-inflammatory potential of SPF fraction. Further analysis of the biological activity of SPFEA was performed. Acute toxicity test was conducted to assess the toxicity of SPFEA. The anti-inflammatory effect was assessed by utilizing xylene induced ear edema model, carrageenan-induced foot edema model and peritonitis model in vivo. The analgesic effect of SPFEA was evaluated using hot plate test, tail immersion test, formaldehyde test as well as acetic acid-induced abdominal writhing pain experiment in vivo. In carrageenan induced foot edema model, ELISA kits were employed to measure levels of inflammation factors (NO, TNF-α, IL-6, COX-2, IL-1ß) in foot tissue as well as MDA, CAT, SOD, GSH-PX levels in liver tissue. RESULTS: HPLC results showed that there were significant differences in bioactive substances among different fractions of SPF, and SPFEA was rich in bioacitve components. Compared with other fractions of SPF, SPFEA exhibited better antioxidant and anti-inflammatory abilities. The 3000 mg/kg SPFEA group in mice had no obvious side effects. The xylene-induced ear edema model, carrageenan-induced foot edema and peritonitis models demonstrated that the SPFEA had significant anti-inflammatory effect. Moreover, inflammation factors including NO, TNF-α, IL-6, COX-2, IL-1ß were significantly reduced in SPFEA groups in foot tissue induced by carrageenan. Additionally, SPFEA effectively decreased liver tissue oxidative stress levels (MDA, SOD, GSH-PX and CAT). The bioactivities of SPFEA demonstrated a clear dose-dependent relationship. The results of the hot plate test, tail immersion test, formaldehyde test and acetic acid-induced abdominal writhing pain experiments indicated the SPFEA possessed an excellent analgesic effect, and this effect was in dose-dependent manner. CONCLUSION: The study provides a scientific foundation for understanding the pharmacological action of SPFEA. It has been indicated that SPFEA has excellent antioxidant, analgesic and anti-inflammatory effects.


Subject(s)
Acetates , Peritonitis , Syringa , Mice , Animals , Antioxidants/adverse effects , Carrageenan , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Tumor Necrosis Factor-alpha , Interleukin-6 , Cyclooxygenase 2/metabolism , Xylenes , Pain/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Acetic Acid/therapeutic use , Formaldehyde , Flowers/metabolism , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Peritonitis/chemically induced , Peritonitis/drug therapy , Superoxide Dismutase/metabolism
6.
Curr Pharm Des ; 29(41): 3324-3339, 2023.
Article in English | MEDLINE | ID: mdl-38111115

ABSTRACT

INTRODUCTION: In the present study, we aimed to investigate the extraction and identification of the potential phytochemicals from the Methanolic Extract of Dryopteris ramosa (MEDR) using GC-MS profiling for validating the traditional uses of MEDR its efficacy in inflammations by using in-vitro, in-vivo and in silico approaches in anti-inflammatory models. METHODS: GC-MS analysis confirmed the presence of a total of 59 phytochemical compounds. The human red blood cells (HRBC) membrane stabilization assay and heat-induced hemolysis method were used as in-vitro anti-inflammatory activity of the extract. The in-vivo analysis was carried out through the Xylene-induced mice ear oedema method. It was found that MEDR at a concentration of 20 µg, 30 µg, and 40 µg showed 35.45%, 36.01%, and 36.33% protection to HRBC in a hypotonic solution, respectively. At the same time, standard Diclofenac at 30 µg showed 45.31% protection of HRBC in a hypotonic solution. RESULTS: The extract showed inhibition of 25.32%, 26.53%, and 33.31% cell membrane lysis at heating at 20 µg, 30 µg, and 40 µg, respectively. In comparison, standard Diclofenac at 30 µg showed 50.49% inhibition of denaturation to heat. Methanolic extract of the plant exhibited momentous inhibition in xylene-induced ear oedema in mice treated with 30 µg extract were 47.2%, 63.4%, and 78.8%, while inhibition in mice ear oedema treated with 60 µg extract was 34.7%, 43.05%, 63.21% and reduction in ear thickness of standard drug were 57.3%, 59.54%, 60.42% recorded at the duration of 1, 4 and 24 hours of inflammation. Molecular docking and simulations were performed to validate the anti-inflammatory role of the phytochemicals that revealed five potential phytochemicals i.e. Stigmasterol,22,23dihydro, Heptadecane,8methyl, Pimaricacid, Germacrene and 1,3Cyclohexadiene,_5(1,5dimethyl4hexenyl)-2methyl which revealed potential or significant inhibitory effects on cyclooxygenase-2 (COX-2), tumour necrosis factor (TNF-α), and interleukin (IL-6) in the docking analysis. CONCLUSION: The outcome of the study signifies that MEDR can offer a new prospect in the discovery of a harmonizing and alternative therapy for inflammatory disease conditions.


Subject(s)
Dryopteris , Mice , Humans , Animals , Xylenes/adverse effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Molecular Docking Simulation , Diclofenac/adverse effects , Hypotonic Solutions/adverse effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Edema/chemically induced , Edema/drug therapy , Methanol/adverse effects , Tumor Necrosis Factor-alpha
7.
Curr Drug Targets ; 24(16): 1282-1291, 2023.
Article in English | MEDLINE | ID: mdl-37957908

ABSTRACT

INTRODUCTION: Rosa webbiana (RW) Wall Ex. Royle is used in traditional medicine in Pakistan for the treatment of several diseases including jaundice. To date, only neuroprotective potential of the plant has been evaluated. OBJECTIVE: The current study was designed to isolate bioactive compound(s) and investigate its possible radical scavenging, anti-inflammatory and hepatoprotective activities. METHODS: Column chromatography was done to isolate compounds from the chloroform fraction of RW. The compound was characterized by mass spectrometry, 1H-NMR, and 2D-NMR spectroscopy. Radical scavenging activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) assays, while anti-inflammatory potential was evaluated via xylene-induced ear edema and carrageenan-induced paw edema models. For hepatoprotection, CCl4-induced model in mice was used. RESULTS: A triterpene compound (3α, 21ß-dihydroxy-olean-12-ene) was isolated from RW fruits (ARW1). The compound exhibited DPPH and H2O2 scavenging activities 61 ± 1.31% and 66 ± 0.48% respectively at 500 µg/ml. ARW1 (at 50 mg/kg) exhibited 62.9 ± 0.15% inhibition of xylene-induced ear edema and 66.6 ± 0.17% carrageenan-induced paw edema in mice. In CCl4-induced hepatotoxic mice, ARW1 significantly countered elevation in alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin (T.B), and reduction in total protein (T.P) levels. Liver histomorphological study supported the serum biochemical profile for hepatoprotection. Moreover, ARW1 significantly attenuated the toxic changes in body and liver weight induced by CCl4. CONCLUSION: The compound ARW1 exhibited anti-radical, anti-inflammatory and hepatoprotective effects. The anti-inflammatory and hepatoprotective activities may be attributed to anti-oxidant potential of the compound.


Subject(s)
Plant Extracts , Rosa , Mice , Animals , Carrageenan/adverse effects , Carrageenan/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Xylenes/adverse effects , Xylenes/metabolism , Hydrogen Peroxide/adverse effects , Hydrogen Peroxide/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Liver/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Edema/chemically induced , Edema/drug therapy , Edema/prevention & control , Pentacyclic Triterpenes/metabolism , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/therapeutic use
8.
Molecules ; 28(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446553

ABSTRACT

In this work, the influence of different phosphorus sources and the modification of zinc and phosphorus on the performance of the conversion of methanol to aromatics (MTA) was investigated. The results showed that the phosphorus source had a significant impact on the selectivity of para-xylene (PX) in xylene and catalyst stability. The introduction of P resulted in the covering of the active acid sites and the narrowing of the pore of the ZSM-5 zeolite, which improved the shape-selectivity for PX in the methanol conversion reaction. Compared with the modifiers of H3PO4 and (NH4)3PO4, the ZSM-5 zeolite modified by (NH4)2HPO4 exhibited better catalyst stability and PX-selectivity due to its larger specific surface area, pore volume and suitable acidity. When the ZSM-5 zeolite was modified by Zn and P, the effect of Zn and P on the selectivity to aromatics and PX in xylene was almost opposite. With the increase in P-loading, the selectivity of PX in xylene gradually increased but at the cost of decreasing the aromatic-selectivity. On the other hand, the loading of Zn introduced Zn-Lewis acid sites to provide aromatization active centers and improved the aromatic-selectivity. However, excessive Zn reduced the selectivity of PX in xylene. The catalyst activity and aromatic-selectivity could be improved to some extent with an appropriate ratio of Zn and P, while maintaining or increasing the para-selectivity of xylene. Compared with 5% P/ZSM-5 catalyst modified with only (NH4)2HPO4, the PX selectivity in xylene over the Zn-P/ZSM-5 catalyst modified with 5% Zn and 1% P improved from 86.6% to 90.1%, and the PX yield increased by 59%.


Subject(s)
Xylenes , Zeolites , Zinc , Methanol , Phosphorus
9.
Reprod Domest Anim ; 58(6): 823-832, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37017149

ABSTRACT

The influence of the functional food plant chia (Salvia hispanica L.) on reproduction functions and its ability to prevent the negative effects of environmental contaminants has not yet been studied. Our study aimed to examine the effect of chia seed extract alone and in combination with xylene on the markers of proliferation, apoptosis and hormones release by cultured bovine and porcine ovarian granulosa cells. The extract of chia reduced all of the measured parameters in bovine and porcine ovarian cells but had no effect on the proliferation of porcine cells. Xylene, stimulated proliferation and IGF-I release and inhibited the release of progesterone and testosterone but not apoptosis of bovine granulosa cells. It promoted proliferation, apoptosis and progesterone output by porcine cells. Chia mitigated the stimulatory effect of xylene on proliferation but not on other parameters in both species. The present results are the first demonstration of a direct effect of chia on basic ovarian cell functions. They confirmed a direct influence of xylene on these functions and found a similar stimulatory action of xylene on bovine and porcine ovarian cell proliferation. The present observations demonstrated species-specific differences in the characteristics of xylene influences on ovarian cell apoptosis and secretory activity. Finally, the present results indicate that chia can be a natural protector against the proliferation-stimulating effects of xylene on ovarian cells in both species.


Subject(s)
Animals, Domestic , Progesterone , Female , Animals , Swine , Cattle , Progesterone/pharmacology , Salvia hispanica , Xylenes/pharmacology , Cells, Cultured , Plant Extracts/pharmacology , Granulosa Cells , Cell Proliferation
10.
J Chromatogr A ; 1696: 463980, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37060855

ABSTRACT

Locating underground pipeline leaks can be challenging due to their hidden nature and variable terrain conditions. To sample soil gas, solid-phase microextraction (SPME) was employed, and a portable gas chromatography/mass spectrometry (GC/MS) was used to detect the presence and concentrations of petroleum hydrocarbon volatile organic compounds (pH-VOCs), including benzene, toluene, ethylbenzene, and xylene (BTEX). We optimized the extraction method through benchtop studies using SPME. The appropriate fibre materials and exposure time were selected for each BTEX compound. Before applying SPME, we preconditioned the soil vapour samples by keeping the temperature at around 4 °C and using ethanol as a desorbing agent and moisture filters to minimize the impact of moisture. To conduct this optimisation, airbags were applied to condition the soil vapour samples and SPME sampling. By conditioning the samples using this method, we were able to improve analytical efficiency and accuracy while minimizing environmental impacts, resulting in more reliable research data in the field. The study employed portable GC/MS data to assess the concentration distribution of BTEX in soil vapour samples obtained from 1.5 m below the ground surface at 10 subsurface vapour monitoring locations at the leak site. After optimization, the detection limits of BTEX were almost 100 µg/m3, and the measurement repeatabilities were approximately 5% and 15% for BTEX standards in the laboratory and soil vapour samples in the field, respectively. The soil vapour samples showed a hotspot region with high BTEX concentrations, reaching 30 mg/m3, indicating a diesel return pipeline leak caused by a gasket failure in a flange. The prompt detection of the leak source was critical in minimizing environmental impact and worker safety hazards.


Subject(s)
Petroleum , Solid Phase Microextraction , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Petroleum/analysis , Benzene Derivatives/analysis , Toluene/analysis , Benzene/analysis , Xylenes/analysis , Soil , Risk Assessment
11.
J Ethnopharmacol ; 309: 116337, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36868442

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Daniellia oliveri (Rolfe) Hutch. & Dalziel (Fabaceae) is used for the treatment of inflammatory diseases and pains (chest pain, toothache and lumbago) and rheumatism. AIM OF THE STUDY: The study investigates the anti-inflammatory and antinociceptive properties of D. oliveri and possible mechanism of antiinflammatory action. MATERIALS AND METHODS: Acute toxicity of the extract was evaluated in mice using the limit test. The anti-inflammatory activity was assessed in xylene-induced paw oedema and carrageenan-induced air-pouch models at doses of 50, 100 and 200 mg/kg, p.o. Volume of exudate, total protein, leukocyte counts, myeloperoxidase (MPO) and concentration of cytokines (TNF-α and IL-6) were measured in the exudate of rats in the carrageenan-induced air-pouch model. Other parameters include lipid peroxidation (LPO), nitric oxide (NO) and antioxidant indices (SOD, CAT and GSH). Histopathology of the air pouch tissue was also carried out. The antinociceptive effect was assessed using acetic acid-induced writhing, tail flick and formalin tests. Locomotor activity was done in the open field test. The extract was analysed with HPLC-DAD-UV technique. RESULTS: The extract showed significant anti-inflammatory effect (73.68 and 75.79%, inhibition) in xylene-induced ear oedema test at the dose of 100 and 200 mg/kg, respectively. In carrageenan air pouch model, the extract significantly reduced exudate volume, protein concentration, the migration of leukocytes and MPO production in the exudate. The concentrations of cytokines TNF-α (12.25 ± 1.80 pg/mL) and IL-6 (21.12 pg/mL) in the exudate at the dose of 200 mg/kg were reduced compared to carrageenan alone group (48.15 ± 4.50 pg/mL; 82.62 pg/mL) respectively. The extract showed significant increase in the activities of CAT and SOD and GSH concentration. The histopathological assessment of the pouch lining revealed reduction of immuno-inflammatory cell influx. Nociception was significantly inhibited by the extract in acetic acid-induced writhing model and the second phase of formalin test indicating a peripheral mechanism of action. The open field test showed that D. oliveri did not alter locomotor activity. The acute toxicity study did not cause mortality or signs of toxicity at 2000 mg/kg, p.o. We identified and quantified caffeic acid, p-coumaric acid, ferulic acid, rutin, apigenin-7-glucoside, quercetin and kaempferol in the extract. CONCLUSION: The results of our study showed that the stem bark extract of D. oliveri possesses anti-inflammatory and antinociceptive activities thereby supporting its traditional use in the treatment of some inflammatory and painful disorders.


Subject(s)
Fabaceae , Plant Extracts , Rats , Mice , Animals , Carrageenan/toxicity , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Analgesics/therapeutic use , Analgesics/toxicity , Tumor Necrosis Factor-alpha , Xylenes/toxicity , Plant Bark/metabolism , Interleukin-6 , Anti-Inflammatory Agents/adverse effects , Cytokines/therapeutic use , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Superoxide Dismutase
12.
J Air Waste Manag Assoc ; 73(5): 362-373, 2023 05.
Article in English | MEDLINE | ID: mdl-36809316

ABSTRACT

The chemical industry releases various types of volatile organic compounds (VOCs) into the atmosphere, and the concentration of VOCs emitted from chimneys is regulated worldwide. However, some VOCs such as benzene are highly carcinogenic, while others such as ethylene and propylene may cause secondary air pollution, owing to their high ozone-generating ability. Accordingly, the US EPA(United State, Environment Protect Agency) introduced a fenceline monitoring system that regulates the concentration of VOCs at the boundary of a facility, away from the chimney source. This system was first introduced in the petroleum refining industry, which simultaneously emits benzene, affecting the local community because of its high carcinogenicity, and ethylene, propylene, xylene, and toluene, which have a high photochemical ozone creation potential (POCP). These emissions contribute to air pollution. In Korea, the concentration at the chimney is regulated; however, the concentration at the plant boundary is not considered. In accordance with the EPA regulations, Korea's petroleum refining industries were identified and the limitations of the Clean Air Conservation Act were studied. The average concentration of benzene at the research facility examined in this study was 8.53 µg/m3, which complied with the benzene action level of 9 µg/m3. However, this value was exceeded at some points along the fenceline, in proximity to the benzene-toluene-xylene (BTX) manufacturing process. The composition ratios of toluene and xylene were 27% and 16%, respectively, which were higher than those of ethylene or propylene. These results suggest that reduction measures in the BTX manufacturing process are necessary. This study shows that legal regulations should enforce reduction measures through continuous monitoring at the fenceline of petroleum refineries in Korea.Implications: Although volatile organic compounds(VOCs) are essential in various industrial sites, they adversely affect the health of people in the near community. Benzene is highly carcinogenic, so it is dangerous if exposed continuously. In addition, there are various types of VOCs, which combine with atmospheric ozone to generate smog. Globally, VOCs are managed as Total VOCs. However, through this study, VOCs have priority, and in the case of the petroleum refining industry, it is suggested that VOCs should be preemptively measured and analyzed to be regulated. In addition, it is necessary to minimize the impact on the local community by regulating the concentration at the fenceline beyond the chimney measurement.


Subject(s)
Air Pollutants , Ozone , Petroleum , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Benzene , Xylenes/analysis , Conservation of Natural Resources , Feasibility Studies , Environmental Monitoring/methods , Toluene/analysis , Ethylenes , China
13.
Curr Microbiol ; 80(3): 94, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36737549

ABSTRACT

Benzene, toluene, ethylbenzene and xylene (BTEX) are toxic petroleum hydrocarbons pollutants that can affect the central nervous system and even cause cancer. For that reason, studies regarding BTEX degradation are extremely important. Our study aimed evaluate the microorganism Bacillus subtilis as a tool for degrading petroleum hydrocarbons pollutants. Assays were run utilizing water or soil distinctly contaminated with gasoline and diesel oil, with and without B. subtilis. The ability of B. subtilis to degrade hydrophobic compounds was analyzed by Fourier-Transform Infrared Spectroscopy (FTIR) and gas chromatography. The FTIR results indicated, for water assays, that B. subtilis utilized the gasoline and diesel oil to produce the biosurfactant, and, as a consequence, performed a biodegradation process. In the same way, for soil assay, B. subtilis biodegraded the diesel oil. The gas chromatography results indicated, for gasoline in soil assay, the B. subtilis removed BTEX. So, B. subtilis was capable of degrading BTEX, producing biosurfactant and it can also be used for other industrial applications. Bioremediation can be an efficient, economical, and versatile alternative for BTEX contamination.


Subject(s)
Environmental Pollutants , Petroleum , Soil Pollutants , Gasoline , Bacillus subtilis/metabolism , Soil/chemistry , Hydrocarbons/metabolism , Benzene/chemistry , Benzene/metabolism , Toluene/metabolism , Petroleum/metabolism , Xylenes/metabolism , Biodegradation, Environmental , Soil Pollutants/metabolism , Environmental Pollutants/metabolism , Soil Microbiology
14.
Biosensors (Basel) ; 13(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36832046

ABSTRACT

Increasing requirements for neural implantation are helping to expand our understanding of nervous systems and generate new developmental approaches. It is thanks to advanced semiconductor technologies that we can achieve the high-density complementary metal-oxide-semiconductor electrode array for the improvement of the quantity and quality of neural recordings. Although the microfabricated neural implantable device holds much promise in the biosensing field, there are some significant technological challenges. The most advanced neural implantable device relies on complex semiconductor manufacturing processes, which are required for the use of expensive masks and specific clean room facilities. In addition, these processes based on a conventional photolithography technique are suitable for mass production, which is not applicable for custom-made manufacturing in response to individual experimental requirements. The microfabricated complexity of the implantable neural device is increasing, as is the associated energy consumption, and corresponding emissions of carbon dioxide and other greenhouse gases, resulting in environmental deterioration. Herein, we developed a fabless fabricated process for a neural electrode array that was simple, fast, sustainable, and customizable. An effective strategy to produce conductive patterns as the redistribution layers (RDLs) includes implementing microelectrodes, traces, and bonding pads onto the polyimide (PI) substrate by laser micromachining techniques combined with the drop coating of the silver glue to stack the laser grooving lines. The process of electroplating platinum on the RDLs was performed to increase corresponding conductivity. Sequentially, Parylene C was deposited onto the PI substrate to form the insulation layer for the protection of inner RDLs. Following the deposition of Parylene C, the via holes over microelectrodes and the corresponding probe shape of the neural electrode array was also etched by laser micromachining. To increase the neural recording capability, three-dimensional microelectrodes with a high surface area were formed by electroplating gold. Our eco-electrode array showed reliable electrical characteristics of impedance under harsh cyclic bending conditions of over 90 degrees. For in vivo application, our flexible neural electrode array demonstrated more stable and higher neural recording quality and better biocompatibility as well during the 2-week implantation compared with those of the silicon-based neural electrode array. In this study, our proposed eco-manufacturing process for fabricating the neural electrode array reduced 63 times of carbon emissions compared to the traditional semiconductor manufacturing process and provided freedom in the customized design of the implantable electronic devices as well.


Subject(s)
Polymers , Xylenes , Electrodes, Implanted , Microelectrodes , Nervous System
15.
BMC Microbiol ; 23(1): 12, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635630

ABSTRACT

BACKGROUND: Foodborne pathogens and spoilage bacteria survived in the biofilm pose a serious threat to food safety and human health. It is urgent to find safe and effective methods to control the planktonic bacteria as well as the biofilm formation. Substances with antibacterial and antibiofilm activity found in lactic acid bacteria were mainly metabolites secreted in the cell-free supernatant. Previously, Lacticaseibacillus rhamnosus YT was isolated because its cell pellets displayed distinguished antibacterial activity under neutral conditions. This study aimed to investigate the antibacterial and antibiofilm properties of the L. rhamnosus YT cells and its crude cell-surface extract. RESULTS: The antibacterial activity of the L. rhamnosus YT cells constantly increased with cells growth and reached the peak value after the cells grew into stationary phase. After cocultivation with the L. rhamnosus YT cells, the biofilm formation of B. subtilis and S. enterica was reduced. The antibacterial activity of the L. rhamnosus YT cells was varied along with various culture conditions (carbon sources, nitrogen sources, medium pH and cultural temperatures) and the antibacterial intensity (antibacterial activity per cell) was disproportional to the biomass. Furthermore, the cell-surface extract was isolated and displayed broad antimicrobial spectrum with a bacteriostatic mode of action. The antibiofilm activity of the extract was concentration-dependent. In addition, the extract was stable to physicochemical treatments (heat, pH and protease). The extract performed favorable emulsifying property which could reduce the water surface tension from 72.708 mN/m to 51.011 mN/m and the critical micelle concentration (CMC) value was 6.88 mg/mL. Besides, the extract was also able to emulsify hydrocarbon substrates with the emulsification, index (E24) ranged from 38.55% (for n-hexane) to 53.78% (for xylene). The E24 for xylene/extract emulsion was merely decreased by 5.77% after standing for 120 h. The main components of the extract were polysaccharide (684.63 µg/mL) and protein (120.79 µg/mL). CONCLUSION: The properties of the extract indicated that it might be a kind of biosurfactant. These data suggested that L. rhamnosus YT and the cell-surface extract could be used as an alternative antimicrobial and antibiofilm agent against foodborne pathogens and spoilage bacteria in food industry.


Subject(s)
Anti-Infective Agents , Lacticaseibacillus rhamnosus , Humans , Lacticaseibacillus , Xylenes/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms , Anti-Infective Agents/pharmacology , Bacteria , Plant Extracts/pharmacology
16.
Environ Res ; 217: 114788, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36403652

ABSTRACT

Biofilter (BF) has been regarded as a versatile gas treatment technology for removing volatile organic compounds (VOCs) from contaminated gas streams. In order for BF to be utilized in the industrial setting, it is essential to conduct research aimed at removing VOC mixtures under different inlet loading conditions, i.e. as a function of the gas flow rate and inlet VOC concentrations. The main aim of this study was to apply artificial neural networks (ANN) and determine the relationship between flow rate (FR), pressure drop (PD), inlet concentration (C), and removal efficiency (RE) in the BF treating gas-phase benzene and xylene mixtures. The ANN model was trained and tested to assess the removal efficiency of benzene (REB) and xylene (REX) under the influence of different FR, PD and C. The model's performance was assessed using a cross-validation method. The REb varied from 20% to >60%, while the REx varied from 10% to 70% during the different experimental phases of BF operation. The causal index (CI) technique was used to determine the sensitivity of the input parameters on the output variables. The ANN model with a topology of 4-4-2 performed the best in terms of predicting the RE profiles of both the pollutants. Furthermore, the effect was more pronounced for xylene because an increase in the benzene concentration reduced xylene removal (CI = -25.7170) more severely than benzene removal. An increase in the xylene concentration had a marginally positive effect on the benzene removal (CI = +0.1178).


Subject(s)
Air Pollutants , Composting , Volatile Organic Compounds , Benzene , Xylenes , Air Pollutants/analysis , Filtration , Volatile Organic Compounds/analysis , Gases , Biodegradation, Environmental
17.
J Ethnopharmacol ; 300: 115720, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36113677

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The leaf tea of Hyptis crenata has its practical use in the Brazilian Amazon for treating gastrointestinal and liver disorders, sweating induction, and as an anti-inflammatory. AIM OF THE STUDY: Evaluation of the chemical composition, acute oral toxicity, and antinociceptive and anti-inflammatory activities of the H. crenata essential oil. MATERIAL AND METHODS: The essential oil was hydrodistilled and analyzed by GC and GC-MS. The antinociceptive action in mice was evaluated for the peripheral and central analgesic activity (abdominal contortion and hot plate tests), and the xylene-induced ear swelling was carried out for the nociception test. RESULTS: Oxygenated monoterpenes (53.0%) and monoterpene hydrocarbons (38.9%) predominated in the H. crenata oil, being 1,8-cineo1e (35.9%), α-pinene (20.8%), camphor (10.0%), and ß-pinene (7.3%) their primary constituents. The oral oil administration in the mice did not display changes in behavior patterns or animal mortality at 300 and 2000 mg/kg doses. The control group's biochemical parameters (ALP, AST, ALT) displayed a statistical difference from the treated group, unlike the renal parameters, which showed no variation between the groups. Oil reduced the abdominal contortions at doses of 100 (79.5%) and 300 mg/kg (44.4%), while with endodontacin, the dose was 5 mg/kg (75.2%). In addition, the oil could not decrease the paw licking/biting time at doses of 30, 100, and 300 mg/kg. However, it showed a significant antinociceptive effect on the second phase in the formalin test inhibiting licking time, with a reduction of 50.8% (30 mg/kg), 63.4% (100 mg/kg), 58.0% (300 mg/kg), and morphine (4 mg/kg, 78.3%). The oil administration produced significant inhibition of ear edema at all tested doses, with a better effect produced at 30 mg/kg (64.0% inhibition). CONCLUSION: The oil of Hyptis crenata, rich in 1,8-cineole, camphor, α-pinene, and ß-pinene, totaling 74%, displayed low acute toxicity and significant anti-inflammatory activity, with peripheral and no central antinociceptive action. Thus, these results show an actual perspective on using H. crenata oil in developing a phytotherapeutic product.


Subject(s)
Hyptis , Oils, Volatile , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Bicyclic Monoterpenes , Brazil , Camphor/therapeutic use , Edema/chemically induced , Edema/drug therapy , Eucalyptol/therapeutic use , Hyptis/chemistry , Mice , Monoterpenes/pharmacology , Monoterpenes/therapeutic use , Morphine Derivatives/adverse effects , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Tea , Xylenes
18.
J Ethnopharmacol ; 301: 115846, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36280015

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hedychium flavum, an ornamental, edible, and medicinal plant, is extensively cultivated as a source of aromatic essential oils (EO). Its flower is a traditional Chinese medicine for treating inflammation-related diseases like indigestion, diarrhea, and stomach pain. In particular, H. flavum flower EO has been used in cosmetics and as an aromatic stomachic to treat chronic gastritis in China. AIM OF THE STUDY: This research aimed to analyze H. flavum flower EO's chemical composition and explore its anti-inflammatory activities and related mechanisms in vitro and in vivo. MATERIALS AND METHODS: EO's chemical composition was determined by GC-FID/MS analysis. For in vitro test, the anti-inflammatory activity of EO was demonstrated by measuring the LPS-induced release of NO, PGE2, IL-1ß, TNF-α, and IL-6 in RAW264.7 macrophages, and then its related mechanisms were explored using qRT-PCR, western blot, and immunofluorescent staining analysis. Next, EO's in vivo anti-inflammatory potential was further evaluated using a xylene-induced ear edema model, in which ear swelling and TNF-α, IL-6, and IL-1ß levels in serum and tissue were examined. RESULTS: The main components of EO were ß-pinene (20.2%), α-pinene (9.3%), α-phellandrene (8.3%), 1,8-cineole (7.1%), E-nerolidol (5.4%), limonene (4.4%), borneol (4.1%), and ß-caryophyllene (3.7%). For the anti-inflammatory activities in vitro, EO dramatically reduced the LPS-stimulated NO and PGE2 release by suppressing the mRNA and protein expression of iNOS and COX-2. Meanwhile, it remarkably decreased IL-6, TNF-α, and IL-1ß production by inhibiting their mRNA levels. Related mechanism studies indicated that it not only inhibited IκBα phosphorylation and degradation, leading to blockade of NF-κB nuclear transfer but also suppressed MAPKs (ERK, p38, and JNK) phosphorylation in LPS-stimulated RAW264.7 cells. Further in vivo assay showed that EO ameliorated xylene-induced ear edema in mice and reduced TNF-α, IL-6, and IL-1ß levels in serum and tissue. CONCLUSIONS: H. flavum EO exerted significant anti-inflammatory activity in vivo and in vitro, and its mechanism of action is related to the inhibition of MAPK and NF-κB activation. Thus, H. flavum EO could be considered a novel and promising anti-inflammatory agent and possess high potential for utilization in the pharmaceutical field.


Subject(s)
Oils, Volatile , Zingiberaceae , Animals , Mice , Anti-Inflammatory Agents , Dinoprostone/metabolism , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Flowers/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Plant Extracts/pharmacology , RAW 264.7 Cells , RNA, Messenger , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Xylenes , Zingiberaceae/metabolism
19.
Article in English | MEDLINE | ID: mdl-36497672

ABSTRACT

BACKGROUND: Children in the affected area were exposed to large amounts of volatile organic compounds (VOCs) from the Hebei Spirit oil spill accident. OBJECTIVES: We investigated the lung function loss from the exposure to VOCs in a longitudinal panel of 224 children 1, 3, and 5 years after the VOC exposure event. METHODS: Atmospheric estimated concentration of total VOCs (TVOCs), benzene, toluene, ethylbenzene, and xylene for 4 days immediately after the accident were calculated for each village (n = 83) using a modeling technique. Forced expiratory volume in 1 s (FEV1) as an indicator of airway status was measured 1, 3, and 5 years after the exposure in 224 children 4~9 years of age at the exposure to the oil spill. Multiple linear regression and linear mixed models were used to evaluate the associations, with adjustment for smoking and second-hand smoke at home. RESULTS: Among the TVOCs (geometric mean: 1319.5 mg/m3·4 d), xylene (9.4), toluene (8.5), ethylbenzene (5.2), and benzene (2.0) were dominant in the order of air concentration level. In 224 children, percent predicted FEV1 (ppFEV1), adjusted for smoking and second-hand smoke at home, was 100.7% after 1 year, 96.2% after 3 years, and 94.6% after 5 years, and the loss over the period was significant (p < 0.0001). After 1 and 3 years, TVOCs, xylene, toluene, and ethylbenzene were significantly associated with ppFEV1. After 5 years, the associations were not significant. Throughout the 5 years' repeated measurements in the panel, TVOCs, xylene, toluene, and ethylbenzene were significantly associated with ppFEV1. CONCLUSIONS: Exposure to VOCs from the oil spill resulted in lung function loss among children, which remained significant up to 5 years after the exposure.


Subject(s)
Air Pollutants , Petroleum , Tobacco Smoke Pollution , Volatile Organic Compounds , Child , Humans , Volatile Organic Compounds/toxicity , Volatile Organic Compounds/analysis , Benzene/analysis , Benzene Derivatives/toxicity , Benzene Derivatives/analysis , Xylenes/toxicity , Xylenes/analysis , Toluene/toxicity , Toluene/analysis , Lung , Air Pollutants/analysis , Environmental Monitoring/methods
20.
Front Public Health ; 10: 1037413, 2022.
Article in English | MEDLINE | ID: mdl-36438252

ABSTRACT

This study aimed to investigate the impact of BTEX compound on blood and spirometry parameters of staff in the Abadan petroleum refinery (Iran). In 80 staff was examined in terms of BTEX exposure (40 exposed and 40 non-exposed). In this study, the air sampling was carried out according to the NIOSH 1,501 method and an automated hematology analyzer was used to analyze all blood samples to evaluate blood parameters and using a Micro Direct automated computerized spirometer. Spss20 software was used to interpret the performance. According to the obtained results, total BTEX concentrations with the recommended standard level showed that, toluene, ethylbenzene, and xylenes, concentrations in Abadan Oil Refining Company Workers' breathing zone were lower than the TLV-TWA recommended by ACGIH. However, the average concentration of benzene was higher than the allowable limit. Therefore, in this study the effect of benzene on the blood and respiratory parameters of the workers was evaluated, the comparison of the blood and respiratory parameters between the groups of exposed and unexposed workers did not reveal any statistical difference between the groups (p > 0.001). The results showed no statistically significant connection between mean blood and spirometry parameters and benzene exposure. Also, based on results the effect of benzene problems needs to be prevented in employees with adequate engineering and management controls and periodic inspection.


Subject(s)
Petroleum , Humans , Benzene/analysis , Environmental Monitoring/methods , Xylenes/analysis , Spirometry
SELECTION OF CITATIONS
SEARCH DETAIL