Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Phytother Res ; 37(5): 1740-1753, 2023 May.
Article in English | MEDLINE | ID: mdl-36576358

ABSTRACT

The efficacy of anti-PD-1 therapy is not as expected in hepatocellular carcinoma (HCC). YAP1 was overexpressed and activated in HCC. The mechanism of YAP1 in HCC immune escape is unclear. Anti-PD-1 treatment increased YAP1 expression in liver tumor cells, and exhausted CD4+ and CD8+ T cells in the blood and spleen of liver tumor mice. YAP1 knockdown suppressed PD-L1 expression, which was involved in JAK1/STAT1, 3 pathways. Moreover, Yap1 knockout elevated CD4+ and CD8+ T cells in liver tumor niche. Consistently, verteporfin, YAP1 inhibitor, decreased TGF-ß and IFN-γ in liver tumor niche and exhausted CD8+ T cell in the spleen. DHA suppressed YAP1 expression and break immune evasion in liver tumor niche, characterized by decreased PD-L1 in liver tumor cells and increased CD8+ T cell infiltration. Furthermore, DHA combined with anti-PD-1 treatment promoted CD4+ T cell infiltration in the spleen and CD8+ T cell in tumor tissues of mice. In summary, YAP1 knockdown in liver tumor cells suppressed PD-L1 expression and recruited cytotoxic T lymphocytes (CTLs), leading to break immune evasion in tumor niche. Mechanistically, YAP1 knockdown suppressed PD-L1 expression, which was involved in JAK1/STAT1, 3 pathways. Finally, DHA inhibited YAP1 expression, which not only inhibited liver tumor proliferation but also break the immunosuppressive niche in liver tumor tissues and improve the effect of anti-PD-1 therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , B7-H1 Antigen/antagonists & inhibitors , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , CD8-Positive T-Lymphocytes , Immunosuppressive Agents , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Tumor Microenvironment , YAP-Signaling Proteins/drug effects , YAP-Signaling Proteins/genetics
2.
Comput Biol Chem ; 98: 107648, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35288361

ABSTRACT

Transcriptional enhanced associate domain (TEAD) proteins bind to YAP/TAZ and mediate YAP/TAZ-induced gene expression. TEADs are not only the key transcription factors and final effector of the Hippo signaling pathway, but also the proteins that regulate cell proliferation and apoptosis. Disorders of Hippo signaling pathway occur in liver cancer, breast cancer, colon cancer and other cancers. S-palmitylation can stabilize the structure of TEADs and is also a necessary condition for the binding of TEADs to YAP/TAZ. The absence of TEAD palmitoylation prevents TEADs from binding to chromatin, thereby inhibiting the transcription and expression of downstream target genes in the Hippo pathway through a dominant-negative mechanism. Therefore, disrupting the S-palmitylation of TEADs has become an attractive and very feasible method in cancer treatment. The palmitate binding pockets of TEADs are conservative, and the crystal structures of TEAD2-palmitoylation inhibitor complexes and the potential TEAD2 inhibitors are more than other TEADs, TEAD2 can be selected to be the target receptor. In this study, structure-based and ligand-based virtual screening, molecular dynamics simulations, Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) calculations, residue decomposition binding energy calculations, and ADME predictions have been performed to discover 11 potential TEAD2 S-palmitylation inhibitors. ChEBML196567 and ZINC000013942794 are the most recommended, because they formed strong binding energies and stable hydrogen bonds with TEAD2 and have good drugbility and high human oral absorption. We found that it was easier to find the targeting small molecules using a combination of structure-based and ligand-based virtual screening methods. Besides, a new core structure has been found in the selected small molecules. In addition, we analyzed the binding modes of these small molecules to TEAD2, and confirmed the hot spot residues Cys380, Ser345, Tyr426, Phe428, Ile408, and Met379. AVAILABILITY OF DATA AND MATERIAL: Supplementary materials are available online.


Subject(s)
Breast Neoplasms , Palmitates , TEA Domain Transcription Factors , Female , Humans , Ligands , Molecular Dynamics Simulation , Palmitates/chemistry , Palmitates/metabolism , TEA Domain Transcription Factors/chemistry , TEA Domain Transcription Factors/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism
3.
J Mol Med (Berl) ; 100(1): 135-146, 2022 01.
Article in English | MEDLINE | ID: mdl-34689211

ABSTRACT

Fluoroscopy-induced chronic radiation dermatitis (FICRD) is a complication of fluoroscopy-guided intervention. Unlike acute radiation dermatitis, FICRD is different as delayed onset and usually appears without preexisting acute dermatitis. Unfortunately, the chronic and progressive pathology of FICRD makes it difficult to treat, and some patients need to receive wide excision and reconstruction surgery. Due to lack of standard treatment, investigating underlying mechanism is needed in order to develop an effective therapy. Herein, the Hippo pathway is specifically identified using an RNA-seq analysis in mild damaged skin specimens of patients with FICRD. Furthermore, specific increase of the Yes-associated protein (YAP1), an effector of the Hippo pathway, in skin region with mild damage plays a protective role for keratinocytes via positively regulating the numerous downstream genes involved in different biological processes. Interestingly, irradiated-keratinocytes inhibit activation of fibroblasts under TGF-ß1 treatment via remote control by an exosome containing YAP1. More importantly, targeting one of YAP1 downstream genes, nuclear receptor subfamily 3 group C member 1 (NR3C1), which encodes glucocorticoid receptor, has revealed its therapeutic potential to treat FICRD by inhibiting fibroblasts activation in vitro and preventing formation of radiation ulcers in a mouse model and in patients with FICRD. Taken together, this translational research demonstrates the critical role of YAP1 in FICRD and identification of a feasible, effective therapy for patients with FICRD. KEY MESSAGES: • YAP1 overexpression in skin specimens of radiation dermatitis from FICRD patient. • Radiation-induced YAP1 expression plays protective roles by promoting DNA damage repair and inhibiting fibrosis via remote control of exosomal YAP1. • YAP1 positively regulates NR3C1 which encodes glucocorticoid receptor expression. • Targeting glucocorticoid receptor by prednisolone has therapeutic potential for FICRD patient.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Fluoroscopy/adverse effects , Glucocorticoids/therapeutic use , Prednisolone/therapeutic use , Radiodermatitis/metabolism , Animals , Cell Line , Hippo Signaling Pathway/drug effects , Humans , Keratinocytes/metabolism , Mice, Inbred C57BL , Radiodermatitis/drug therapy , Radiodermatitis/genetics , Skin/drug effects , Skin/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism
4.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166267, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34508829

ABSTRACT

Bromodomain and extraterminal (BET) proteins are promising therapeutic targets for hematological and solid tumors. However, BET inhibitor monotherapy did not show a significant therapeutic benefit for hepatocellular carcinoma (HCC) in preclinical trials. Here, we identified YAP/TAZ genes, as determinants for sensitivity to BET inhibitors. YAP/TAZ expression, especially TAZ, promote resistance to BET inhibitor. In addition, we analyzed that the mRNA level of PDE5 was positively correlated with YAP/TAZ based on TCGA database and demonstrated tadalafil, a PDE5 inhibitor, could block YAP/TAZ protein expression by activating Hippo pathway. Cotreatment with tadalafil and JQ-1 synergistically reduced YAP/TAZ protein expression, suppressed proliferation and induced G0-G1 arrest of cultured HCC cells. JQ-1 alone does not show significant benefits in a mouse model of HCC induced by c-Myc/N-Ras plasmids. In contrast, the combination, tadalafil and JQ-1, successfully suppressed tumor progression, enhanced antitumor immunity by improving the ratio of activated CD8 and extended the survival time of mice. Our data define the key role of YAP/TAZ in mediating resistance to BET inhibitor, described the PDE5/PKG/Hippo/YAP/TAZ axis and identified a common clinical drug that can be developed as an effective combined strategy to overcome BET inhibitor resistance in MYC/Ras-driven HCC.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Nerve Tissue Proteins/genetics , Receptors, Cell Surface/genetics , Tadalafil/pharmacology , YAP-Signaling Proteins/genetics , Animals , Azepines/pharmacology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Hippo Signaling Pathway/drug effects , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Nerve Tissue Proteins/antagonists & inhibitors , Phosphodiesterase 5 Inhibitors/pharmacology , Proto-Oncogene Proteins c-myc/genetics , Receptors, Cell Surface/antagonists & inhibitors , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL