Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 114(1): 184-194, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27399645

RESUMEN

Efficient delivery of therapeutics across the neuroprotective blood-brain barrier (BBB) remains a formidable challenge for central nervous system drug development. High-fidelity in vitro models of the BBB could facilitate effective early screening of drug candidates targeting the brain. In this study, we developed a microfluidic BBB model that is capable of mimicking in vivo BBB characteristics for a prolonged period and allows for reliable in vitro drug permeability studies under recirculating perfusion. We derived brain microvascular endothelial cells (BMECs) from human induced pluripotent stem cells (hiPSCs) and cocultured them with rat primary astrocytes on the two sides of a porous membrane on a pumpless microfluidic platform for up to 10 days. The microfluidic system was designed based on the blood residence time in human brain tissues, allowing for medium recirculation at physiologically relevant perfusion rates with no pumps or external tubing, meanwhile minimizing wall shear stress to test whether shear stress is required for in vivo-like barrier properties in a microfluidic BBB model. This BBB-on-a-chip model achieved significant barrier integrity as evident by continuous tight junction formation and in vivo-like values of trans-endothelial electrical resistance (TEER). The TEER levels peaked above 4000 Ω · cm2 on day 3 on chip and were sustained above 2000 Ω · cm2 up to 10 days, which are the highest sustained TEER values reported in a microfluidic model. We evaluated the capacity of our microfluidic BBB model to be used for drug permeability studies using large molecules (FITC-dextrans) and model drugs (caffeine, cimetidine, and doxorubicin). Our analyses demonstrated that the permeability coefficients measured using our model were comparable to in vivo values. Our BBB-on-a-chip model closely mimics physiological BBB barrier functions and will be a valuable tool for screening of drug candidates. The residence time-based design of a microfluidic platform will enable integration with other organ modules to simulate multi-organ interactions on drug response. Biotechnol. Bioeng. 2017;114: 184-194. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Técnicas Analíticas Microfluídicas/métodos , Modelos Biológicos , Análisis de Matrices Tisulares/métodos , Línea Celular , Impedancia Eléctrica , Diseño de Equipo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Técnicas Analíticas Microfluídicas/instrumentación , Permeabilidad
2.
Lab Chip ; 15(3): 882-8, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25490891

RESUMEN

Advances in bio-mimetic in vitro human skin models increase the efficiency of drug screening studies. In this study, we designed and developed a microfluidic platform that allows for long-term maintenance of full thickness human skin equivalents (HSE) which are comprised of both the epidermal and dermal compartments. The design is based on the physiologically relevant blood residence times in human skin tissue and allows for the establishment of an air-epidermal interface which is crucial for maturation and terminal differentiation of HSEs. The small scale of the design reduces the amount of culture medium and the number of cells required by 36 fold compared to conventional transwell cultures. Our HSE-on-a-chip platform has the capability to recirculate the medium at desired flow rates without the need for pump or external tube connections. We demonstrate that the platform can be used to maintain HSEs for three weeks with proliferating keratinocytes similar to conventional HSE cultures. Immunohistochemistry analyses show that the differentiation and localization of keratinocytes was successfully achieved, establishing all sub-layers of the epidermis after one week. Basal keratinocytes located at the epidermal-dermal interface remain in a proliferative state for three weeks. We use a transdermal transport model to show that the skin barrier function is maintained for three weeks. We also validate the capability of the HSE-on-a-chip platform to be used for drug testing purposes by examining the toxic effects of doxorubucin on skin cells and structure. Overall, the HSE-on-a-chip is a user-friendly and cost-effective in vitro platform for drug testing of candidate molecules for skin disorders.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Evaluación Preclínica de Medicamentos/instrumentación , Prepucio/efectos de los fármacos , Técnicas Analíticas Microfluídicas , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Prepucio/citología , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Masculino , Técnicas Analíticas Microfluídicas/instrumentación , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA