Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Pharmacol ; 15: 123-135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937078

RESUMEN

Introduction: Leishmaniasis is one of the neglected tropical diseases, threatening lives of about 350 million people globally. Brucea antidysenterica seeds are used for the treatment of cutaneous leishmaniasis in the traditional medicine in Ethiopia. Objective: This study aimed to evaluate Brucea antidysenterica seeds' anti-leishmanial activity in vitro. Methods: The crude (80% methanol) extract of Brucea antidysenterica seeds and its fractions were evaluated for their anti-leishmanial activities against promastigotes and intracellular amastigotes of Leishmania donovani and Leishmania aethiopica, and for their cytotoxic effects against mammalian cells. The quantitative estimations of total phenolic compounds (TPCs), flavonoids (TFCs) and alkaloids (TACs) were determined, spectrophotometrically. Median inhibitory concentration (IC50) and median cytotoxic concentration (CC50) of the extract and its solvent fractions were calculated using GraphPad Prism 9.1.0 computer software. Data was presented as mean ± standard error of the mean (SEM). Results: The crude extract and its hexane, ethyl acetate and butanol fractions showed anti-leishmanial activities, with IC50 values of 4.14-60.12 µg/mL against promastigotes, and 6.16-40.12 µg/mL against amastigotes of both Leishmania species. They showed moderate cytotoxicity against Vero cell lines and peritoneal mice macrophages, with CC50 values of 100-500 µg/mL, but >1600 µg/mL against red blood cells. Selectivity indices ranged from 7.97 to 30.97. The crude extract, and its ethyl acetate and hexane fractions possessed 54.78-127.72 mg of gallic acid equivalent TPC, 18.30-79.21 mg of quercetin equivalent TFC, and 27.62-97.22 mg of atropine equivalent TAC per gram of extracts. Conclusion: The seeds of the plant possessed anti-leishmanial activities against L. aethiopica and L. donovani that might provide a scientific justification for its use in the treatment of leishmaniasis by traditional healers. Future works are recommended to isolate, purify and identify the possible secondary metabolites attributed to the anti-leishmanial activity.

2.
Drug Des Devel Ther ; 14: 1307-1317, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32280200

RESUMEN

INTRODUCTION: Leishmaniasis is a collective term used to describe various pathological conditions caused by an obligate intracellular protozoan of the genus Leishmania. It is one of the neglected diseases and has been given minimal attention by drug discovery and development stakeholders to narrow the safety and efficacy gaps of the drugs currently used to treat leishmaniasis. The challenge is further exacerbated by the emergence of drug resistance by the parasites. METHODS: Aiming to look for potential anti-leishmanial hits and leads, we screened Medicines for Malaria Venture (MMV) Pathogen Box compounds against clinically isolated Leishmania donovani strain. In this medium-throughput primary screening assay, the compounds were screened against promastigotes, and then against amastigote stages. RESULTS: From the total 400 compounds screened, 35 compounds showed >50% inhibitory activity on promastigotes in the initial screen (1 µM). Out of these compounds, nine showed >70% inhibition, with median inhibitory concentration (IC50) ranging from 12 to 491 nM using the anti-promastigote assay, and from 53 to 704 nM using the intracellular amastigote assay. Identified compounds demonstrated acceptable safety profiles on THP-1 cell lines and sheep red blood cells, and had appropriate physicochemical properties suitable for further drug development. Two compounds (MMV690102 and MMV688262) were identified as leads. The anti-tubercular agent MMV688262 (delamanid) showed a synergistic effect with amphotericin B, indicating the prospect of using this compound for combination therapy. CONCLUSION: The current study indicates the presence of additional hits which may hold promise as starting points for anti-leishmanial drug discovery and in-depth structure-activity relationship studies.


Asunto(s)
Antiprotozoarios/farmacología , Inhibidores de Crecimiento/farmacología , Leishmania donovani/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Malaria/tratamiento farmacológico , Adolescente , Animales , Antiprotozoarios/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Femenino , Inhibidores de Crecimiento/química , Humanos , Leishmania donovani/crecimiento & desarrollo , Leishmania donovani/aislamiento & purificación , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Ratones , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad
3.
Artículo en Inglés | MEDLINE | ID: mdl-30956682

RESUMEN

Plant medicine is the oldest form of health care known to mankind. Syzygium guineense is one of the many species of Ethiopian medicinal plants which has a long history of use as remedies for various ailments such as dysentery, diarrhea, and hypertension. In many countries, herbal medicines and related products are introduced into the market without safety or toxicological evaluation. The aim of this study was to investigate the histopathological effect of 80% methanol extract of S. guineense on liver and kidney and blood parameters of rats. For acute toxicity study, rats were randomly divided into three groups (n=4). The control group received distilled water, while the experimental groups received a single dose of 2000 mg/kg and 5000 mg/kg 80% methanolic extract of S. guineense leaves per oral. For subacute toxicity study, the rats were randomly divided into three groups (n=6). The control group received distilled water, while the experimental groups received 500 mg/kg and 1500 mg/kg 80% methanol extract of S. guineense leaves orally for 28 days. At the end of the experiment, blood samples were collected for hematology and clinical chemistry evaluations. Gross pathology and histopathology of liver and kidneys were assessed. In the acute toxicity study, rats treated with 2000 mg/kg and 5000 mg/kg showed no toxicological signs observed on behavior, gross pathology, and body weight of rats. In the subacute toxicity study rats have showed no significant changes on behavior, gross pathology, body weight, and hematological and biochemical parameters, whereas both experimental groups had a lower blood glucose level compared with the control group (p < 0.05). There were no significant differences in the gross and histopathology of the liver and kidneys of experimental animals in extract exposed groups and their counterpart control. The 80% methanol extract of S. guineense does not produce adverse effects in rats after acute and subacute treatment. Before marketing a S. guineense leaf based remedy, subchronic and chronic toxicity evaluations need to be done.

4.
Artículo en Inglés | MEDLINE | ID: mdl-28572829

RESUMEN

BACKGROUND: Fruits of Mimusops kummel A. DC. (Sapotaceae) are traditionally used for the treatment of diarrhea. The present study aimed at investigating modes of actions of this fruits for antidiarrheal action to guide future drug development process. METHODS: Fractions of chloroform, n-butanol, and water were obtained from 80% methanol extract, which was prepared by maceration. Antidiarrheal activities and the modes of actions were investigated in mice. RESULTS: In castor oil induced diarrheal model, the extract delayed onset of diarrhea and reduced number and weight of feces at all tested doses significantly. In this model all fractions significantly delayed onset of diarrhea at all tested doses. Charcoal meal test showed that the extract and all the fractions produced a significant antimotility effect at all tested doses. Enteropooling test showed that the extract as well as n-butanol and aqueous fractions at all tested doses produced a significant decline in volume and weight of intestinal contents, whereas chloroform fraction had substantial effect only at high dose. CONCLUSION: This study demonstrated that the extract and solvent fractions produced antidiarrheal activities due to dual inhibitory effect, intestinal motility, and fluid secretion, with the aqueous fraction being the most active among fractions in three models.

5.
Malar J ; 14: 288, 2015 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-26208861

RESUMEN

BACKGROUND: Medicinal plants are a validated source for discovery of new leads and standardized herbal medicines. The aim of this study was to assess the activity of Vernonia amygdalina leaf extracts and isolated compounds against gametocytes and sporogonic stages of Plasmodium berghei and to validate the findings on field isolates of Plasmodium falciparum. METHODS: Aqueous (Ver-H2O) and ethanolic (Ver-EtOH) leaf extracts were tested in vivo for activity against sexual and asexual blood stage P. berghei parasites. In vivo transmission blocking effects of Ver-EtOH and Ver-H2O were estimated by assessing P. berghei oocyst prevalence and density in Anopheles stephensi mosquitoes. Activity targeting early sporogonic stages (ESS), namely gametes, zygotes and ookinetes was assessed in vitro using P. berghei CTRPp.GFP strain. Bioassay guided fractionation was performed to characterize V. amygdalina fractions and molecules for anti-ESS activity. Fractions active against ESS of the murine parasite were tested for ex vivo transmission blocking activity on P. falciparum field isolates. Cytotoxic effects of extracts and isolated compounds vernolide and vernodalol were evaluated on the human cell lines HCT116 and EA.hy926. RESULTS: Ver-H2O reduced the P. berghei macrogametocyte density in mice by about 50% and Ver-EtOH reduced P. berghei oocyst prevalence and density by 27 and 90%, respectively, in An. stephensi mosquitoes. Ver-EtOH inhibited almost completely (>90%) ESS development in vitro at 50 µg/mL. At this concentration, four fractions obtained from the ethylacetate phase of the methanol extract displayed inhibitory activity >90% against ESS. Three tested fractions were also found active against field isolates of the human parasite P. falciparum, reducing oocyst prevalence in Anopheles coluzzii mosquitoes to one-half and oocyst density to one-fourth of controls. The molecules and fractions displayed considerable cytotoxicity on the two tested cell-lines. CONCLUSIONS: Vernonia amygdalina leaves contain molecules affecting multiple stages of Plasmodium, evidencing its potential for drug discovery. Chemical modification of the identified hit molecules, in particular vernodalol, could generate a library of druggable sesquiterpene lactones. The development of a multistage phytomedicine designed as preventive treatment to complement existing malaria control tools appears a challenging but feasible goal.


Asunto(s)
Antimaláricos/farmacología , Malaria/transmisión , Extractos Vegetales/farmacología , Plasmodium berghei/efectos de los fármacos , Vernonia/química , Animales , Anopheles/parasitología , Antimaláricos/uso terapéutico , Antimaláricos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria/prevención & control , Masculino , Ratones , Extractos Vegetales/uso terapéutico , Extractos Vegetales/toxicidad
6.
Parasit Vectors ; 8: 94, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25884799

RESUMEN

BACKGROUND: Herbal remedies are widely used in many malaria endemic countries to treat patients, in particular in the absence of anti-malarial drugs and in some settings to prevent the disease. Herbal medicines may be specifically designed for prophylaxis and/or for blocking malaria transmission to benefit both, the individual consumer and the community at large. Neem represents a good candidate for this purpose due to its inhibitory effects on the parasite stages that cause the clinical manifestations of malaria and on those responsible for infection in the vector. Furthermore, neem secondary metabolites have been shown to interfere with various physiological processes in insect vectors. This study was undertaken to assess the impact of the standardised neem extract NeemAzal on the fitness of the malaria vector Anopheles stephensi following repeated exposure to the product through consecutive blood meals on treated mice. METHODS: Batches of An. stephensi mosquitoes were offered 5 consecutive blood meals on female BALB/c mice treated with NeemAzal at an azadirachtin A concentration of 60, 105 or 150 mg/kg. The blood feeding capacity was estimated by measuring the haematin content of the rectal fluid excreted by the mosquitoes during feeding. The number of eggs laid was estimated by image analysis and their hatchability assessed by direct observations. RESULTS: A dose and frequency dependent impact of NeemAzal treatment on the mosquito feeding capacity, oviposition and egg hatchability was demonstrated. In the 150 mg/kg treatment group, the mosquito feeding capacity was reduced by 50% already at the second blood meal and by 50 to 80% in all treatment groups at the fifth blood meal. Consequently, a 50 - 65% reduction in the number of eggs laid per female mosquito was observed after the fifth blood meal in all treatment groups. Similarly, after the fifth treated blood meal exposure, hatchability was found to be reduced by 62% and 70% in the 105 and 150 mg/kg group respectively. CONCLUSIONS: The findings of this study, taken together with the accumulated knowledge on neem open the challenging prospects of designing neem-based formulations as multi-target phytomedicines exhibiting preventive, parasite transmission-blocking as well as anti-vectorial properties.


Asunto(s)
Anopheles/fisiología , Antimaláricos/farmacología , Azadirachta/química , Insectos Vectores/fisiología , Limoninas/farmacología , Malaria/transmisión , Animales , Anopheles/efectos de los fármacos , Sangre , Femenino , Humanos , Insectos Vectores/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Oviposición , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA