Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mikrochim Acta ; 189(3): 83, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35118576

RESUMEN

The emergence of conjugated polymers (CPs) has provided a pathway to attain smart multifunctional conjugated polymer nanoparticles (CPNs) with enhanced properties and diverse applications. CPNs based on π-extended CPs exhibit high fluorescence brightness, low cytotoxicity, excellent photostability, reactive oxygen species (ROS) generation ability, high photothermal conversion efficiency (PCE), etc. which endorse them as an excellent theranostic tool. Furthermore, the unique light-harvesting and energy transfer properties of CPNs enables their transformation into smart functional nanohybrids with augmented performance. Owing to such numerous features, simple preparation method and an easy separation process, the CPNs and their hybrids have been constantly rising as a frontrunner in the domain of medicine and much work has been done in the respective research area. This review summarizes the recent progress that has been made in the field of CPNs for biological and biomedical applications with special emphasis on biosensing, imaging, and theranostics. Following an introduction into the field, a first large section provides overview of the conventional as well as recently established synthetic methods for various types of CPNs. Then, the CPNs-based fluorometric assays for biomolecules based on different detection strategies have been described. Later on, examples of CPNs-based probes for imaging, both in vitro and in vivo using cancer cells and animal models have been explored. The next section highlighted the vital theranostic applications of CPNs and corresponding nanohybrids, mainly via imaging-guided photodynamic therapy (PDT), photothermal therapy (PTT) and drug delivery. The last section summarizes the current challenges and gives an outlook on the potential future trends on CPNs as advanced healthcare material.


Asunto(s)
Técnicas Biosensibles , Imagen Molecular , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Técnicas Fotoacústicas , Polímeros/química , Animales , Humanos , Luminiscencia , Procesos Fotoquímicos
2.
Int J Biol Macromol ; 103: 783-790, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28495625

RESUMEN

Recently, the biosynthesis of nanoparticle attracted the attention of scientific community due to its simplicity, ease and eco-friendly nature. In the present study, Camellia Sinensis (C. Sinensis) leaves extract was employed for the synthesis of nickel nanoparticles (NiNPs). The fabricated NiNPs were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) and X-ray diffraction techniques. The photocatalytic activity (PCA) was evaluated by degrading crystal violet (CV) dye. The NiNPs size was in the range of 43.87-48.76nm, spherical in shape and uniformly distributed with magnetization saturation of 0.073 emu/g. The NiNPs showed promising PCA under solar light irradiation. At optimized conditions, up to 99.5% CV dye degradation was achieved. Results revealed that biosynthesis can be adopted for the synthesis of NiNPs in nano-size range since it is simple, cost effective and eco-friendly in nature versus physico-chemical methods.


Asunto(s)
Camellia sinensis/química , Nanopartículas del Metal/química , Nanotecnología , Níquel/química , Procesos Fotoquímicos , Extractos Vegetales/química , Catálisis , Técnicas de Química Sintética , Oxidación-Reducción , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA