Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 23(1): 229, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608306

RESUMEN

INTRODUCTION: The emergence of multidrug-resistant Klebsiella pneumoniae in hospitals represents a serious threat to public health. Infections caused by Klebsiella pneumoniae are widespread in healthcare institutions, mainly pneumonia, bloodstream infections, and infections affecting neonates in intensive care units; so, it is necessary to combat this pathogen with new strategies. Targeting virulence factors necessary to induce host damage and disease is a new paradigm for antimicrobial therapy with several potential benefits that could lead to decreased resistance. BACKGROUND: The influence of metformin, N-acetylcysteine, and secnidazole on Klebsiella pneumoniae virulence factors production was tested. The production of Klebsiella pneumoniae virulence factors such as biofilm formation, urease, proteases, hemolysins, and tolerance to oxidative stress was evaluated phenotypically using sub-inhibitory concentration (1/8 MIC) of metformin, N-acetylcysteine, and secnidazole. For more confirmation, qRT-PCR was used to assess the relative expression level of rmpA, wcaG, fimH-1, mrkD, ureA, and khe genes regulating virulence factors production. RESULTS: Metformin, N-acetylcysteine, and secnidazole were all found to have a powerful inhibitory effect on the production of virulence factors phenotypically. Our results showed a significant reduction in the expression level of rmpA, wcaG, fimH-1, mrkD, ureA, and khe genes. Furthermore, the tested drugs were investigated in vivo to inform their ability to protect mice against Klebsiella pneumoniae pathogenesis. CONCLUSIONS: Metformin, N-acetylcysteine, and secnidazole inhibited the virulence of Klebsiella pneumoniae. Besides combating resistant Klebsiella pneumoniae, the tested drugs could also serve as an adjuvant to traditional antibiotics.


Asunto(s)
Acetilcisteína , Metformina , Animales , Ratones , Virulencia , Acetilcisteína/farmacología , Klebsiella pneumoniae/genética , Factores de Virulencia/genética
2.
Molecules ; 27(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36500623

RESUMEN

The emergence of resistant microbes threatens public health on our planet, and the emergence of resistant bacteria against the most commonly used antibiotics necessitates urgent alternative therapeutic options. One way to fight resistant microbes is to design new antimicrobial agents, however, this approach takes decades of research. An alternative or parallel approach is to target the virulence of bacteria with natural or synthetic agents. Active constituents from medicinal plants represent a wide library to screen for natural anti-virulence agents. Caraway is used as a traditional spice and in some medicinal applications such as carminative, antispasmodic, appetizer, and expectorant. Caraway essential oil is rich in terpenes that were previously reported to have antimicrobial activities. In our study, we tested the caraway essential oil in sub-inhibitory concentration as a virulence agent against the Gram-negative bacteria Pseudomonas aeruginosa. Caraway essential oil in sub-inhibitory concentration dramatically blocked protease activity, pyocyanin production, biofilm formation, and quorum sensing activity of P. aeruginosa. The gas chromatography-mass spectroscopy (GC-MS) profile of caraway fruit oil identified 13 compounds representing 85.4% of the total oil components with carvone and sylvestrene as the main constituents. In conclusion, caraway essential oil is a promising virulence-attenuating agent that can be used against topical infections caused by P. aeruginosa.


Asunto(s)
Aceites Volátiles , Pseudomonas aeruginosa , Aceites Volátiles/farmacología , Cromatografía de Gases y Espectrometría de Masas , Biopelículas , Factores de Virulencia , Percepción de Quorum , Antibacterianos/farmacología , Antibacterianos/química , Bacterias
3.
BMC Microbiol ; 22(1): 268, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36348266

RESUMEN

BACKGROUND: Infections affecting neonates caused by Staphylococcus aureus are widespread in healthcare facilities; hence, novel strategies are needed to fight this pathogen. In this study, we aimed to investigate the effectiveness of the FDA-approved medications ascorbic acid, dexamethasone, and sodium bicarbonate to reduce the virulence of the resistant Staphylococcus aureus bacteria that causes neonatal sepsis and seek out suitable alternatives to the problem of multi-drug resistance. METHODS: Tested drugs were assessed phenotypically and genotypically for their effects on virulence factors and virulence-encoding genes in Staphylococcus aureus. Furthermore, drugs were tested in vivo for their ability to reduce Staphylococcus aureus pathogenesis. RESULTS: Sub-inhibitory concentrations (1/8 MIC) of ascorbic acid, dexamethasone, and sodium bicarbonate reduced the production of Staphylococcus aureus virulence factors, including biofilm formation, staphyloxanthin, proteases, and hemolysin production, as well as resistance to oxidative stress. At the molecular level, qRT-PCR was used to assess the relative expression levels of crtM, sigB, sarA, agrA, hla, fnbA, and icaA genes regulating virulence factors production and showed a significant reduction in the relative expression levels of all the tested genes. CONCLUSIONS: The current findings reveal that ascorbic acid, dexamethasone, and sodium bicarbonate have strong anti-virulence effects against Staphylococcus aureus. Thus, suggesting that they might be used as adjuvants to treat infections caused by Staphylococcus aureus in combination with conventional antimicrobials or as alternative therapies.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Sepsis Neonatal , Infecciones Estafilocócicas , Recién Nacido , Humanos , Staphylococcus aureus , Bicarbonato de Sodio/farmacología , Bicarbonato de Sodio/uso terapéutico , Ácido Ascórbico/farmacología , Biopelículas , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Factores de Virulencia/genética , Dexametasona/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
4.
Afr Health Sci ; 19(2): 2043-2055, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31656488

RESUMEN

BACKGROUND: Quorum sensing inhibitionis an advanced strategy that aims to interfere with bacterial cell-to-cell communication systems (quorum sensing), which regulate virulence factors production in Pseudomonas aeruginosa, in order to overcome the globalcrisis of antimicrobial resistance. OBJECTIVES: Study the potential quorum sensing inhibitory effect of Zinc oxide (ZnO)nanoparticlesin Pseudomonas aeruginosa and the impact on production of virulence factors. METHODS: Quorum sensing inhibitory effect of ZnO was evaluated by assessing its ability to reducePseudomonas aeruginosa virulence factors production; rhamnolipids, pyocyanin, pyoverdin, hemolysins, elastase and proteases. Furthermore, qRT-PCR was performed to determine ZnO inhibitory effect onQS-regulatory geneslasI, lasR, rhlI, rhlR, pqsA and pqsR that control virulence factors secretion. Moreover, mice survival test was conducted to investigate the influence of ZnO on Pseudomonas aeruginosa-induced mortality in vivo. RESULTS: ZnO revealed a statistically significant reduction in the production of QS-controlled virulence factors rhamnolipids, pyocyanin, pyoverdin, hemolysins, elastase and proteases. Furthermore, ZnO exhibited a significant decrease in the relative expression of QS-regulatory geneslasI, lasR, rhlI, rhlR, pqsA and pqsR. Additionally, ZnO significantly reduced the pathogenesis of Pseudomonas aeruginosa in vivo. CONCLUSION: ZnO nanoparticles can be used as a quorum sensing inhibitor in Pseudomonas aeruginosa infections either as an adjuvant or alternative to conventional antimicrobials.


Asunto(s)
Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Percepción de Quorum , Óxido de Zinc/farmacología , Animales , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Nanopartículas , Fenotipo , Infecciones por Pseudomonas/mortalidad , Tasa de Supervivencia , Virulencia , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA