Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 254(Pt 2): 127866, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939769

RESUMEN

The widespread use of petroleum-based plastic mulch in agriculture has accelerated white and microplastic pollution while posing a severe agroecological challenge due to its difficulty in decomposing in the natural environment. However, endowing mulch film with degradability and growth cycle adaptation remains elusive due to the inherent non-degradability of petroleum-based plastics severely hindering its applications. This work reports polylactic acids hyperbranched composite mulch (PCP) and measured biodegradation behavior under burial soil, seawater, and ultraviolet (UV) aging to understand the biodegradation kinetics and to increase their sustainability in the agriculture field. Due to high interfacial interactions between polymer and nanofiler, the resultant PCP mulch significantly enhances crystallization ability, hydrophilicity, and mechanical properties. PCP mulch can be scalable-manufactured to exhibit modulated degradation performance under varying degradation conditions and periods while concurrently enhancing crop growth (wheat). Thus, such mulch with excellent performance can reduce labor costs and the environmental impact of waste mulch disposal to replace traditional mulch for sustainable agricultural production.


Asunto(s)
Nanopartículas , Petróleo , Celulosa , Plásticos , Suelo/química , Agricultura , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA