Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 93, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321418

RESUMEN

BACKGROUND: Acacia species are economically significant as medicinal plants that have been utilized since ancient times. Acacia modesta has been reported to possess potent antibacterial and antioxidant properties, but its growth rate is slow. In this study, we hypothesized that inducing callus in vitro from A. modesta could enhance the production of antibacterial and antioxidant secondary metabolites, thereby circumventing the issues of slow growth and excessive harvesting of the plant. RESULTS: The callus was induced from axillary buds on MS medium supplemented with 1 mg/L of 2,4-D and 1 mg/L of BAP. The secondary metabolites, volatile compounds, antibacterial activity, and antioxidant activity of the callus and parent plant leaf extracts were evaluated. The results revealed that the content of phenolics and flavonoids, the number of volatile compounds, and the antibacterial and antioxidant activities of the callus extract were significantly enhanced (P ≤ 0.05) compared to the leaf extract. The antibacterial and antioxidant effects were strongly correlated with the total phenolic and flavonoid content in the extracts. CONCLUSIONS: Our findings suggest that in vitro callus culture increases the production of phenolics, flavonoids, and volatile compounds. This subsequently enhances the antibacterial and antioxidant properties of A. modesta.


Asunto(s)
Acacia , Antioxidantes , Antioxidantes/metabolismo , Acacia/metabolismo , Antibacterianos/farmacología , Extractos Vegetales , Flavonoides/metabolismo , Fenoles/metabolismo
2.
Curr Microbiol ; 80(2): 67, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36607432

RESUMEN

Weeds cause destructive agricultural losses, so weed control is an urgent challenge facing agriculture. The extensive use of synthetic chemical herbicides has detrimental environmental impacts and promotes the emergence of resistant species. Therefore, in this study we tried to find a new natural weed control that can ensure biosafety and eco-sustainability. The phytotoxic potential of culture filtrates of the endophytes Bacillus inaquosorum NL1 and Bacillus safensis NL2 isolated from Nerium oleander leaf against the invasive harmful weed species Cenchrus echinatus was evaluated. Culture filtrates of both bacterial species exhibited potent phytotoxic activity, which resulted in 100% germination inhibition of C. echinatus. The chemical analysis of culture filtrates revealed high contents of total phenolics and n-alkanes that have phytotoxic effects against seed germination. According to the findings of this study the endophytic bacteria associated with N. oleander leaf can be used in the future to develop a sustainable bio-herbicide formulation.


Asunto(s)
Alcaloides , Cenchrus , Herbicidas , Nerium , Malezas , Germinación , Semillas , Herbicidas/farmacología , Hojas de la Planta , Bacterias
3.
World J Microbiol Biotechnol ; 38(11): 205, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36006544

RESUMEN

Marine ecosystems represent the largest biome on the earth. Until now, the relationships between the marine microbial inhabitants and the macroalgal species unclear, and the previous studies are insufficient. So, more research is required to advance our understanding of macroalgal- microbial interactions. In this study, we tried to investigate the relationship between the brown marine macroalga, Cystoseira myrica and its associated bacterial endophyte, Catenococcus thiocycli, as the first study concerning the production of bioactive secondary metabolites from a macroalgal species comparing with its associated endophytic bacteria. Secondary metabolites were extracted from alga and its bacterial endophyte with ethyl acetate and methanol. All extracts contained significant quantities of phenolics, flavonoids, tannins, and saponins. Strikingly, extracts possess antioxidant, anti-inflammatory and antimicrobial activities which were significantly correlated to phenolic and flavonoid contents.


Asunto(s)
Myrica , Algas Marinas , Antioxidantes , Bacterias , Ecosistema , Endófitos , Flavonoides , Fenoles , Extractos Vegetales , Vibrionaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA