Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroreport ; 28(10): 584-589, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28538515

RESUMEN

This randomized cross-over study tested the hypothesis that exposure to short-wavelength light induces symptoms of motion sickness (MS). The study participants were 28 healthy adults (14 women; mean age±SD, 25.96±3.11 years). Two stimuli oscillating within a range of 0.4-0.6 Hz were used to induce MS: a blue wave stimulus with short-wavelength light (460 nm) and a green wave stimulus with middle-wavelength light (555 nm). All participants were exposed to both stimuli throughout two separate periods. After a baseline period, participants were exposed to each stimulus three times for 4 min. The Simulator Sickness Questionnaire, a self-report checklist composed of three subscales (Oculomotor, Disorientation, and Nausea), heart rate variability, and electrogastrography were used to measure the degree of symptoms related to MS. A linear mixed-effects model was used for statistical analysis. The results showed significant main effects for Period (P<0.01), Color (P<0.01), and Time Point (P<0.01) scores on the Simulator Sickness Questionnaire Nausea subscale. A post-hoc test indicated that scores on the Nausea subscale were significantly higher after the third exposure to blue light than after the first and second exposures. The linear mixed-effects model showed significant main effects for Color (P<0.01) with respect to the normogastria/tachygastria ratio. These findings suggest that short-wavelength light induces symptoms of MS, especially gastrointestinal symptoms.


Asunto(s)
Mareo por Movimiento/prevención & control , Fototerapia , Adulto , Estudios Cruzados , Susceptibilidad a Enfermedades , Electrodiagnóstico , Femenino , Frecuencia Cardíaca , Humanos , Modelos Lineales , Masculino , Mareo por Movimiento/fisiopatología , Náusea/etiología , Náusea/fisiopatología , Náusea/prevención & control , Periodicidad , Estimulación Luminosa/métodos , Autoinforme , Resultado del Tratamiento , Percepción Visual
2.
J Sci Food Agric ; 91(7): 1166-74, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21433011

RESUMEN

Obesity and type 2 diabetes are pathologies with rapidly growing prevalence throughout the world. A few molecular targets offer the most hope for anti-obesity and anti-diabetic therapeutics. One of the keys to success will be the induction of uncoupling protein 1 (UCP1) in abdominal white adipose tissue (WAT) and the regulation of cytokine secretions from both abdominal adipose cells and macrophage cells infiltrated into adipose tissue. Anti-obesity and anti-diabetic effects of fucoxanthin, a characteristic carotenoid found in brown seaweeds, have been reported. Nutrigenomic studies reveal that fucoxanthin induces UCP1 in abdominal WAT mitochondria, leading to the oxidation of fatty acids and heat production in WAT. Fucoxanthin improves insulin resistance and decreases blood glucose levels through the regulation of cytokine secretions from WAT. The key structure of carotenoids for the expression of anti-obesity effect is suggested to be the carotenoid end of the polyene chromophore, which contains an allenic bond and two hydroxyl groups.


Asunto(s)
Grasa Abdominal/efectos de los fármacos , Fármacos Antiobesidad/farmacología , Suplementos Dietéticos , Hipoglucemiantes/farmacología , Phaeophyceae/química , Fitoterapia , Xantófilas/uso terapéutico , Grasa Abdominal/metabolismo , Animales , Glucemia/metabolismo , Citocinas/metabolismo , Humanos , Resistencia a la Insulina , Canales Iónicos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteína Desacopladora 1 , Xantófilas/química , Xantófilas/farmacología
3.
Biol Pharm Bull ; 32(4): 646-50, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19336899

RESUMEN

Saw palmetto extract (SPE), used widely for the treatment of benign prostatic hyperplasia (BPH) has been shown to bind alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine (1,4-DHP) calcium channel antagonist receptors. Major constituents of SPE are lauric acid, oleic acid, myristic acid, palmitic acid and linoleic acid. The aim of this study was to investigate binding affinities of these fatty acids for pharmacologically relevant (alpha(1)-adrenergic, muscarinic and 1,4-DHP) receptors. The fatty acids inhibited specific [(3)H]prazosin binding in rat brain in a concentration-dependent manner with IC(50) values of 23.8 to 136 microg/ml, and specific (+)-[(3)H]PN 200-110 binding with IC(50) values of 24.5 to 79.5 microg/ml. Also, lauric acid, oleic acid, myristic acid and linoleic acid inhibited specific [(3)H]N-methylscopolamine ([(3)H]NMS) binding in rat brain with IC(50) values of 56.4 to 169 microg/ml. Palmitic acid had no effect on specific [(3)H]NMS binding. The affinity of oleic acid, myristic acid and linoleic acid for each receptor was greater than the affinity of SPE. Scatchard analysis revealed that oleic acid and lauric acid caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]prazosin, [(3)H]NMS and (+)-[(3)H]PN 200-110. The results suggest that lauric acid and oleic acid bind noncompetitively to alpha(1)-adrenergic, muscarinic and 1,4-DHP calcium channel antagonist receptors. We developed a novel and convenient method of determining 5alpha-reductase activity using LC/MS. With this method, SPE was shown to inhibit 5alpha-reductase activity in rat liver with an IC(50) of 101 microg/ml. Similarly, all the fatty acids except palmitic acid inhibited 5alpha-reductase activity, with IC(50) values of 42.1 to 67.6 microg/ml. In conclusion, lauric acid, oleic acid, myristic acid, and linoleic acid, major constituents of SPE, exerted binding activities of alpha(1)-adrenergic, muscarinic and 1,4-DHP receptors and inhibited 5alpha-reductase activity.


Asunto(s)
Inhibidores de 5-alfa-Reductasa , Canales de Calcio Tipo L/metabolismo , Ácidos Grasos no Esterificados/farmacología , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Muscarínicos/metabolismo , Serenoa/química , Antagonistas Adrenérgicos alfa/metabolismo , Animales , Unión Competitiva/efectos de los fármacos , Bloqueadores de los Canales de Calcio/metabolismo , Canales de Calcio Tipo L/efectos de los fármacos , Ácidos Grasos no Esterificados/química , Femenino , Isradipino/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Agonistas Muscarínicos/metabolismo , N-Metilescopolamina/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Prazosina/metabolismo , Ensayo de Unión Radioligante , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Receptores Muscarínicos/efectos de los fármacos
4.
Anal Sci ; 25(4): 553-7, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19359798

RESUMEN

Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary-tract symptoms secondary to benign prostatic hyperplasia. The mechanisms of pharmacological effects of SPE include the inhibition of 5alpha-reductase, anti-androgenic effects, anti-proliferative effects, and anti-inflammatory effects. Previously, we showed that SPE bound actively to alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine calcium channel (1,4-DHP) receptors in the prostate and bladder of rats, whereas its active constituents have not been fully clarified. The present investigation is aimed to identify the main active components contained in hexane and diethyl ether extracts of SPE with the use of column chromatography and preparative HPLC. Based on the binding activity with alpha(1)-adrenergic, muscarinic, and 1,4-DHP receptors, both isolated oleic and lauric acids were deduced to be active components. Authentic samples of oleic and lauric acids also exhibited similar binding activities to these receptors as the fatty acids isolated from SPE, consistent with our findings. In addition, oleic and lauric acids inhibited 5alpha-reductase, possibly leading to therapeutic effects against benign prostatic hyperplasia and related lower urinary-tract symptoms.


Asunto(s)
Ácidos Grasos/aislamiento & purificación , Ácidos Grasos/farmacología , Extractos Vegetales/química , Animales , Canales de Calcio/metabolismo , Colestenona 5 alfa-Reductasa/metabolismo , Cromatografía Líquida de Alta Presión , Dihidropiridinas/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/uso terapéutico , Masculino , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo , Ratas , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Muscarínicos/metabolismo , Serenoa , Enfermedades Urológicas/tratamiento farmacológico , Enfermedades Urológicas/metabolismo
5.
Acta Pharmacol Sin ; 30(3): 227-81, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19262550

RESUMEN

Saw palmetto extract (SPE), an extract from the ripe berries of the American dwarf palm, has been widely used as a therapeutic remedy for urinary dysfunction due to benign prostatic hyperplasia (BPH) in Europe. Numerous mechanisms of action have been proposed for SPE, including the inhibition of 5alpha-reductase. Today, alpha(1)-adrenoceptor antagonists and muscarinic cholinoceptor antagonists are commonly used in the treatment of men with voiding symptoms secondary to BPH. The improvement of voiding symptoms in patients taking SPE may arise from its binding to pharmacologically relevant receptors in the lower urinary tract, such as alpha(1)-adrenoceptors, muscarinic cholinoceptors, 1,4-dihyropyridine receptors and vanilloid receptors. Furthermore, oral administration of SPE has been shown to attenuate the up-regulation of alpha(1)-adrenoceptors in the rat prostate induced by testosterone. Thus, SPE at clinically relevant doses may exert a direct effect on the pharmacological receptors in the lower urinary tract, thereby improving urinary dysfunction in patients with BPH and an overactive bladder. SPE does not have interactions with co-administered drugs or serious adverse events in blood biochemical parameters, suggestive of its relative safety, even with long-term intake. Clinical trials (placebo-controlled and active-controlled trials) of SPE conducted in men with BPH were also reviewed. This review should contribute to the understanding of the pharmacological effects of SPE in the treatment of patients with BPH and associated lower urinary tract symptoms (LUTS).


Asunto(s)
Antagonistas de Andrógenos/farmacología , Antagonistas de Estrógenos/farmacología , Extractos Vegetales/farmacología , Sistema Urinario/efectos de los fármacos , Antagonistas de Andrógenos/química , Antagonistas de Andrógenos/uso terapéutico , Animales , Proliferación Celular/efectos de los fármacos , Ensayos Clínicos como Asunto , Antagonistas de Estrógenos/química , Antagonistas de Estrógenos/uso terapéutico , Humanos , Masculino , Placebos , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/epidemiología , Serenoa , Sistema Urinario/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA