Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Transl Med ; 12(7): e954, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35872650

RESUMEN

BACKGROUND: Mice with deletion of complex I subunit Ndufs4 develop mitochondrial encephalomyopathy resembling Leigh syndrome (LS). The metabolic derangement and underlying mechanisms of cardio-encephalomyopathy in LS remains incompletely understood. METHODS: We performed echocardiography, electrophysiology, confocal microscopy, metabolic and molecular/morphometric analysis of the mice lacking Ndufs4. HEK293 cells, human iPS cells-derived cardiomyocytes and neurons were used to determine the mechanistic role of mitochondrial complex I deficiency. RESULTS: LS mice develop severe cardiac bradyarrhythmia and diastolic dysfunction. Human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) with Ndufs4 deletion recapitulate LS cardiomyopathy. Mechanistically, we demonstrate a direct link between complex I deficiency, decreased intracellular (nicotinamide adenine dinucleotide) NAD+ /NADH and bradyarrhythmia, mediated by hyperacetylation of the cardiac sodium channel NaV 1.5, particularly at K1479 site. Neuronal apoptosis in the cerebellar and midbrain regions in LS mice was associated with hyperacetylation of p53 and activation of microglia. Targeted metabolomics revealed increases in several amino acids and citric acid cycle intermediates, likely due to impairment of NAD+ -dependent dehydrogenases, and a substantial decrease in reduced Glutathione (GSH). Metabolic rescue by nicotinamide riboside (NR) supplementation increased intracellular NAD+ / NADH, restored metabolic derangement, reversed protein hyperacetylation through NAD+ -dependent Sirtuin deacetylase, and ameliorated cardiomyopathic phenotypes, concomitant with improvement of NaV 1.5 current and SERCA2a function measured by Ca2+ -transients. NR also attenuated neuronal apoptosis and microglial activation in the LS brain and human iPS-derived neurons with Ndufs4 deletion. CONCLUSIONS: Our study reveals direct mechanistic explanations of the observed cardiac bradyarrhythmia, diastolic dysfunction and neuronal apoptosis in mouse and human induced pluripotent stem cells (iPSC) models of LS.


Asunto(s)
Cardiomiopatías , Células Madre Pluripotentes Inducidas , Enfermedad de Leigh , Animales , Bradicardia/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales , NAD/metabolismo
2.
J Mol Cell Cardiol ; 85: 104-16, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26004364

RESUMEN

Cardiac dysfunction in obesity is associated with mitochondrial dysfunction, oxidative stress and altered insulin sensitivity. Whether oxidative stress directly contributes to myocardial insulin resistance remains to be determined. This study tested the hypothesis that ROS scavenging will improve mitochondrial function and insulin sensitivity in the hearts of rodent models with varying degrees of insulin resistance and hyperglycemia. The catalytic antioxidant MnTBAP was administered to the uncoupling protein-diphtheria toxin A (UCP-DTA) mouse model of insulin resistance (IR) and obesity, at early and late time points in the evolution of IR, and to db/db mice with severe obesity and type-two diabetes. Mitochondrial function was measured in saponin-permeabilized cardiac fibers. Aconitase activity and hydrogen peroxide emission were measured in isolated mitochondria. Insulin-stimulated glucose oxidation, glycolysis and fatty acid oxidation rates were measured in isolated working hearts, and 2-deoxyglucose uptake was measured in isolated cardiomyocytes. Four weeks of MnTBAP attenuated glucose intolerance in 13-week-old UCP-DTA mice but was without effect in 24-week-old UCP-DTA mice and in db/db mice. Despite the absence of improvement in the systemic metabolic milieu, MnTBAP reversed cardiac mitochondrial oxidative stress and improved mitochondrial bioenergetics by increasing ATP generation and reducing mitochondrial uncoupling in all models. MnTBAP also improved myocardial insulin mediated glucose metabolism in 13 and 24-week-old UCP-DTA mice. Pharmacological ROS scavenging improves myocardial energy metabolism and insulin responsiveness in obesity and type 2 diabetes via direct effects that might be independent of changes in systemic metabolism.


Asunto(s)
Antioxidantes/farmacología , Síndrome Metabólico/tratamiento farmacológico , Metaloporfirinas/farmacología , Mitocondrias Cardíacas/metabolismo , Animales , Antioxidantes/uso terapéutico , Evaluación Preclínica de Medicamentos , Metabolismo Energético , Ácidos Grasos/metabolismo , Homeostasis , Insulina/sangre , Resistencia a la Insulina , Síndrome Metabólico/sangre , Metaloporfirinas/uso terapéutico , Ratones Endogámicos C57BL , Ratones Obesos , Miocardio/metabolismo , Estrés Oxidativo , Transducción de Señal
3.
J Clin Invest ; 123(12): 5319-33, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24177427

RESUMEN

The induction of autophagy in the mammalian heart during the perinatal period is an essential adaptation required to survive early neonatal starvation; however, the mechanisms that mediate autophagy suppression once feeding is established are not known. Insulin signaling in the heart is transduced via insulin and IGF-1 receptors (IGF-1Rs). We disrupted insulin and IGF-1R signaling by generating mice with combined cardiomyocyte-specific deletion of Irs1 and Irs2. Here we show that loss of IRS signaling prevented the physiological suppression of autophagy that normally parallels the postnatal increase in circulating insulin. This resulted in unrestrained autophagy in cardiomyocytes, which contributed to myocyte loss, heart failure, and premature death. This process was ameliorated either by activation of mTOR with aa supplementation or by genetic suppression of autophagic activation. Loss of IRS1 and IRS2 signaling also increased apoptosis and precipitated mitochondrial dysfunction, which were not reduced when autophagic flux was normalized. Together, these data indicate that in addition to prosurvival signaling, insulin action in early life mediates the physiological postnatal suppression of autophagy, thereby linking nutrient sensing to postnatal cardiac development.


Asunto(s)
Autofagia , Corazón/crecimiento & desarrollo , Proteínas Sustrato del Receptor de Insulina/fisiología , Miocitos Cardíacos/metabolismo , Aminoácidos/farmacología , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/deficiencia , Autofagia/genética , Autofagia/fisiología , Beclina-1 , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Corazón Fetal/patología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Insulina/fisiología , Proteínas Sustrato del Receptor de Insulina/deficiencia , Factor I del Crecimiento Similar a la Insulina/fisiología , Ratones , Mitocondrias Cardíacas/fisiología , Fosforilación Oxidativa , Fosforilación , Procesamiento Proteico-Postraduccional , Receptor IGF Tipo 1/fisiología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/fisiología
4.
Endocrinology ; 150(5): 2153-60, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19179447

RESUMEN

The circadian clock synchronizes the activity level of an organism to the light-dark cycle of the environment. Energy intake, as well as energy metabolism, also has a diurnal rhythm. Although the role of the clock genes in the sleep-wake cycle is well characterized, their role in the generation of the metabolic rhythms is poorly understood. Here, we use mice deficient in the clock protein mPer2 to study how the circadian clock regulates two critical metabolic rhythms: glucocorticoid and food intake rhythms. Our findings indicate that mPer2-/- mice do not have a glucocorticoid rhythm even though the corticosterone response to hypoglycemia, ACTH, and restraint stress is intact. In addition, the diurnal feeding rhythm is absent in mPer2-/- mice. On high-fat diet, they eat as much during the light period as they do during the dark period and develop significant obesity. The diurnal rhythm of neuroendocrine peptide alphaMSH, a major effector of appetite control, is disrupted in the hypothalamus of mPer2-/- mice even though the diurnal rhythm of ACTH, the alphaMSH precursor, is intact. Peripheral injection of alphaMSH, which has been shown to enter the brain, restored the feeding rhythm and induced weight loss in mPer2-/- mice. These findings emphasize the requirement of mPer2 in appetite control during the inactive period and the potential role of peripherally administered alphaMSH in restoring night-day eating pattern in individuals with circadian eating disorders such as night-eating syndrome, which is also associated with obesity.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Ritmo Circadiano/genética , Conducta Alimentaria/fisiología , Glucocorticoides/metabolismo , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Animales , Proteínas de Ciclo Celular/genética , Corticosterona/metabolismo , Hiperfagia/genética , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Circadianas Period , Fotoperiodo , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética , alfa-MSH/administración & dosificación , alfa-MSH/metabolismo , alfa-MSH/farmacología
5.
Endocrinology ; 149(8): 4043-50, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18450963

RESUMEN

The goal of this study was to determine whether inhibiting the renin-angiotensin system would restore insulin signaling and normalize substrate use in hearts from obese ob/ob mice. Mice were treated for 4 wk with Captopril (4 mg/kg x d). Circulating levels of free fatty acids, triglycerides, and insulin were measured and glucose tolerance tests performed. Rates of palmitate oxidation and glycolysis, oxygen consumption, and cardiac power were determined in isolated working hearts in the presence and absence of insulin, along with levels of phosphorylation of Akt and AMP-activated protein kinase (AMPK). Captopril treatment did not correct the hyperinsulinemia or impaired glucose tolerance in ob/ob mice. Rates of fatty acid oxidation were increased and glycolysis decreased in ob/ob hearts, and insulin did not modulate substrate use in hearts of ob/ob mice and did not increase Akt phosphorylation. Captopril restored the ability of insulin to regulate fatty acid oxidation and glycolysis in hearts of ob/ob mice, possibly by increasing Akt phosphorylation. Moreover, AMPK phosphorylation, which was increased in hearts of ob/ob mice, was normalized by Captopril treatment, suggesting that in addition to restoring insulin sensitivity, Captopril treatment improved myocardial energetics. Thus, angiotensin-converting enzyme inhibitors restore the responsiveness of ob/ob mouse hearts to insulin and normalizes AMPK activity independently of effects on systemic metabolic homeostasis.


Asunto(s)
Captopril/farmacología , Glucosa/metabolismo , Corazón/efectos de los fármacos , Insulina/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Miocardio/metabolismo , Obesidad/metabolismo , Angiotensina II/sangre , Animales , Antihipertensivos/farmacología , Peso Corporal/efectos de los fármacos , Captopril/uso terapéutico , Enfermedades Cardiovasculares/prevención & control , Evaluación Preclínica de Medicamentos , Corazón/anatomía & histología , Insulina/farmacología , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/complicaciones , Técnicas de Cultivo de Órganos , Tamaño de los Órganos/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
6.
Mol Med ; 14(3-4): 98-108, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18317567

RESUMEN

Previous phenotyping of glucose homeostasis and insulin secretion in a mouse model of hereditary hemochromatosis (Hfe(-/-)) and iron overload suggested mitochondrial dysfunction. Mitochondria from Hfe(-/-) mouse liver exhibited decreased respiratory capacity and increased lipid peroxidation. Although the cytosol contained excess iron, Hfe(-/-) mitochondria contained normal iron but decreased copper, manganese, and zinc, associated with reduced activities of copper-dependent cytochrome c oxidase and manganese-dependent superoxide dismutase (MnSOD). The attenuation in MnSOD activity was due to substantial levels of unmetallated apoprotein. The oxidative damage in Hfe(-/-) mitochondria is due to diminished MnSOD activity, as manganese supplementation of Hfe(-/-) mice led to enhancement of MnSOD activity and suppressed lipid peroxidation. Manganese supplementation also resulted in improved insulin secretion and glucose tolerance associated with increased MnSOD activity and decreased lipid peroxidation in islets. These data suggest a novel mechanism of iron-induced cellular dysfunction, namely altered mitochondrial uptake of other metal ions.


Asunto(s)
Hemocromatosis/metabolismo , Hierro/metabolismo , Manganeso/metabolismo , Mitocondrias Hepáticas/metabolismo , Aconitato Hidratasa/metabolismo , Animales , Suplementos Dietéticos , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Glucosa/metabolismo , Proteína de la Hemocromatosis , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Insulina/metabolismo , Hierro/administración & dosificación , Peroxidación de Lípido , Manganeso/administración & dosificación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Consumo de Oxígeno , Succinato Deshidrogenasa/metabolismo , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA