Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Food Biochem ; 46(8): e14178, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35451509

RESUMEN

Punica granatum (Pomegranate fruit) and its constituents are proven effective against various cancer types. However, a kinome-wide screening for the active phytochemicals against kinases is not reported. This study aims in validating pomegranate fruit extract (PFE) against acute myeloid leukemia (AML) cells, and computationally identifying the phytochemicals interacting with active kinases. PFE was made with Soxhlet extractor using absolute ethanol. Gas-chromatography-mass spectroscopy (GC-MS) for phytochemical identification and MTT assay for cytotoxicity in AML (THP-1, TF-1 and HL-60) cells were performed. Apoptosis, CDK5 and CDK8 were assessed with flow cytometry. Kinase profiling was performed using In silico kinome screening. GC-MS analysis revealed 38 bioactive phytochemicals in PFE including pyrazoles, aldehydes, phenols, esters, pyranosides, and octadecadienoic acids. The extract inhibited the AML cell proliferations with GI50 values of 195.5 µg/ml, 289.1 µg/ml, and 353.5 µg/ml in THP-1, THP-1, and HL-60 cells, respectively. PFE also exhibited a dose-responsive increase in apoptotic cell populations when treated to the AML cells. Computational screening and modeling predicted three critical constituents, viz., Deoxyartemisinin, 3-Methyl-3-phenyl-3H-indazole, and 8-fluoro-5,6-dimethoxy-3,4-dihydro-2H-naphthalen-1-one of pomegranate extract to interact mainly with cyclin-dependent kinases, including CDK5 and CDK8. Proteinand ligand docking predicted binding energies, and binding pose for top candidate lead molecules. In vitro assay exhibited the anticancer properties of PFE in AML cells. Computational kinome screening predicted top three PFE constituents targeting CDKs which may be responsible for the demonstrated anticancer efficacy of the extract against AML. This hypothesis further aligned with observed efficacy of PFE to inhibit CDK5 and CDK8 in all AML cells tested. PRACTICAL APPLICATIONS: Though Punica granatum (Pomegranate fruit) and its constituents are proven effective against various cancer types, a kinome-wide screening for the active phytochemicals against kinases is not reported. In this study, we have conducted GC/MS characterization of the active phytochemicals of PFE and have performed a kinome-wide screening for all the 38 identified compounds toward 310 active kinases commonly expressed in cancers. These observations warrant isolation and further evaluation of these phytochemicals or their analogues as effective CDK inhibitors against AML proliferation. Further, the computational methods used in this study will throw light on literature for new options of kinome panel screening of active phytochemicals or small molecules.


Asunto(s)
Leucemia Mieloide Aguda , Lythraceae , Granada (Fruta) , Frutas/química , Cromatografía de Gases y Espectrometría de Masas , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Lythraceae/química , Fitoquímicos/análisis , Fitoquímicos/farmacología , Extractos Vegetales/análisis , Extractos Vegetales/farmacología
2.
Saudi J Biol Sci ; 28(11): 6279-6288, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34764752

RESUMEN

Lung carcinoma is the leading cause of cancer-related mortalities worldwide, and present therapeutical interventions are not successful enough to treat this disease in many cases. Recent years have witnessed a surge in exploring natural compounds for their antiproliferative efficacy to expedite the characterization of novel anticancer chemotherapeutics. Swertia chirayita is a valued medicinal herb and possess intrinsic pharmaceutical potential. However, elucidation of its anticancer effects at molecular levels remains unclear and needs to be investigated. We assessed the anticancer and apoptotic efficacy of S. chirayita ethanolic extract (Sw-EtOH) on non-small cell lung cancer (NSCLC) A549 cells during this exploratory study. The results elucidated that S. chirayita extract induced toxic effects within lung cancer cells by ~1 fold during cytotoxicity and LDH release assay at a 400 µg/ml concentration. Sw-EtOH extract elevates the level of ROS, resulting in the disruption of Δψm and release of cytosolic cytochrome c by 3.15 fold. Activation of caspases-3, -8 & -9 also escalated by ~1 fold, which further catalyze the augmentation of PARP cleavage (~3 folds), resulting in a four-fold increase in Sw-EtOH induced apoptosis. The gene expression analysis further demonstrated that Sw-EtOH extracts inhibited JAK1/STAT3 signaling pathway by down-regulating the levels of JAK1 and STAT3 to nearly half a fold. Treatment of Sw-EtOH modulates the expression level of various STAT3 associated proteins, including Bcl-XL, Bcl-2, Mcl-1, Bax, p53, Fas, Fas-L, cyclinD1, c-myc, IL-6, p21 and p27 in NSCLC cells. Thus, our study provided a strong impetus that Sw-EtOH holds the translational potential of being further evaluated as efficient cancer therapeutics and a preventive agent for the management of NSCLC.

3.
J Food Biochem ; 45(7): e13810, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34080203

RESUMEN

Diabetic nephropathy (DN) is the most common manifestation of high glucose induced diabetes mellitus. In this study, we report the effects of Cassia auriculata ethanol leaf extract (CALE) on DN-associated cell toxicity and complications. The effects of CALE were screened in vitro using RGE cells. Cell viability was assessed using MTT and flow cytometry. Male Sprague-Dawley rats were divided into control, DN and treatment groups (n = 8). The DN and treatment groups received 60 mg/kg/bw of streptozotocin in citrate buffer, while the treatment group was administered 150 mg/kg/bw of CALE for 10 weeks. Biochemical analysis was conducted using spectrophotometry. Kidney tissues were analyzed using hematoxylin and eosin staining and transmission electron microscopy. CD365-KIM-1 expression was assessed using flow cytometry and signalling proteins were detected using western blotting. Treatment with 30-mM glucose reduced the viability of RGE cells in a time-dependent manner and increased the population of dead RGE cells. Cotreatment with CALE reduced cell death and glucose induced protein expression of LC3-II, RIP-1 and RIP-3 in a dose-dependent manner. In addition, CALE improved the biochemical complications, renal dysfunction and pathophysiology of rats with DN and partially or fully restored the expression of key DN-associated signalling proteins, such as KIM-1 LC3-II, RIP-1, RIP-3 and p-p38MAPK in kidney cells. CALE showed protective effects, and improved DN-associated complications in RGE cells under high glucose stress conditions, potentially by inhibiting autophagic-necroptosis signals. Additionally, CALE improved the biochemical and pathological features of kidney injury while reducing autophagic-necroptosis in rat renal cells via the LC3-II-RIP-p38MAPK pathway. PRACTICAL APPLICATIONS: Results from the current investigation will add information to the literature on glucose induced renal toxicity and the protective effects of CALE over the complications of diabetic nephropathy (DN). The mechanistic investigations of the study will add light on the autophagic/necroptosis signals in DN and open new routes of investigations to study the efficacy of CALE in diabetes-related complications.


Asunto(s)
Cassia , Diabetes Mellitus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Masculino , Necroptosis , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA