Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 25(23)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256043

RESUMEN

The Catharanthus roseus plant has been used traditionally to treat diabetes mellitus. Scientific evidence supporting the antidiabetic effects of this plant's active ingredient-vindoline has not been fully evaluated. In this study, extracts of C. roseus and vindoline were tested for antioxidant activities, alpha amylase and alpha glucosidase inhibitory activities and insulin secretory effects in pancreatic RIN-5F cell line cultured in the absence of glucose, at low and high glucose concentrations. The methanolic extract of the plant showed the highest antioxidant activities in addition to the high total polyphenolic content (p < 0.05). The HPLC results exhibited increased concentration of vindoline in the dichloromethane and the ethylacetate extracts. Vindoline showed noticeable antioxidant activity when compared to ascorbic acid at p < 0.05 and significantly improved the in vitro insulin secretion. The intracellular reactive oxygen species formation in glucotoxicity-induced cells was significantly reduced following treatment with vindoline, methanolic and the dichloromethane extracts when compared to the high glucose untreated control (p < 0.05). Plant extracts and vindoline showed weaker inhibitory effects on the activities of carbohydrate metabolizing enzymes when compared to acarbose, which inhibited the activities of the enzymes by 80%. The plant extracts also exhibited weak alpha amylase and alpha glucosidase inhibitory effects.


Asunto(s)
Alcaloides/química , Antioxidantes/química , Antioxidantes/farmacología , Catharanthus/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Vinblastina/análogos & derivados , Glucemia/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Secreción de Insulina/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Especies Reactivas de Oxígeno , Vinblastina/química , alfa-Amilasas/antagonistas & inhibidores
2.
Molecules ; 22(4)2017 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-28333074

RESUMEN

Diabetes mellitus is an endocrine disease of multiple aetiologies in insulin secretion. A deficiency in insulin results in hyperglycemia with metabolic disturbances of biomolecules. Moringa oleifera (MO) is endemic in the tropics with a variety of ethnomedicinal importance. The leaf of this plant has been reported to possess antioxidant and medicinal properties that may be helpful in the treatment and management of diabetes and its associated complications. Diabetes was induced intraperitoneally in rats by a single dose of streptozotocin (55 mg/kg) and treated with methanolic extract of Moringa oleifera (250 mg/kg b.wt) for six weeks. Forty-eight (48) adult male Wistar strain rats were randomly divided into four groups: normal control (NC), Moringa oleifera treated control rats (NC + MO), diabetic rats (DM) and Moringa oleifera treated diabetic rats (DM + MO). Estimation of antioxidant capacity, total polyphenols, flavonoids and flavonols content of Moringa oleifera extract was performed and serum biochemical markers were evaluated. Antioxidants such as catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) activities, glutathione (GSH) and inflammatory biomarkers were determined in the kidney. Results showed high antioxidant capacities of MO extract and improved serum biochemical markers, whilst lipid peroxidation (MDA) levels were reduced in non-diabetic and diabetic rats after MO treatment when compared to normal control. Subsequent administration of MO led to an increased concentration of serum albumin, globulin and total protein with a decrease in the level of MDA, and improvements in CAT, SOD, GSH, GPx, (tumour necrosis factor-alpha)TNF-α and (interleukin-6)IL-6. MO contains potent phytochemical constituents that offer protective action against diabetic-induced renal damage, reactive oxygen species (ROS) and inflammation and could therefore play a role in reducing diabetic complications, particularly in developing countries such as in Africa where the majority cannot afford orthodox medicine.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Metanol/administración & dosificación , Moringa oleifera/química , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hipoglucemiantes/farmacología , Interleucina-6/metabolismo , Riñón/efectos de los fármacos , Riñón/enzimología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Metanol/química , Metanol/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Distribución Aleatoria , Ratas , Ratas Wistar , Estreptozocina
3.
Artículo en Inglés | MEDLINE | ID: mdl-27403200

RESUMEN

Background. Hypoxis hemerocallidea is a native plant that grows in the Southern African regions and is well known for its beneficial medicinal effects in the treatment of diabetes, cancer, and high blood pressure. Aim. This study evaluated the effects of Hypoxis hemerocallidea on oxidative stress biomarkers, hepatic injury, and other selected biomarkers in the liver and kidneys of healthy nondiabetic and streptozotocin- (STZ-) induced diabetic male Wistar rats. Materials and Methods. Rats were injected intraperitoneally with 50 mg/kg of STZ to induce diabetes. The plant extract-Hypoxis hemerocallidea (200 mg/kg or 800 mg/kg) aqueous solution was administered (daily) orally for 6 weeks. Antioxidant activities were analysed using a Multiskan Spectrum plate reader while other serum biomarkers were measured using the RANDOX chemistry analyser. Results. Both dosages (200 mg/kg and 800 mg/kg) of Hypoxis hemerocallidea significantly reduced the blood glucose levels in STZ-induced diabetic groups. Activities of liver enzymes were increased in the diabetic control and in the diabetic group treated with 800 mg/kg, whereas the 200 mg/kg dosage ameliorated hepatic injury. In the hepatic tissue, the oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), catalase, and total glutathione were reduced in the diabetic control group. However treatment with both doses improved the antioxidant status. The FRAP and the catalase activities in the kidney were elevated in the STZ-induced diabetic group treated with 800 mg/kg of the extract possibly due to compensatory responses. Conclusion. Hypoxis hemerocallidea demonstrated antihyperglycemic and antioxidant effects especially in the liver tissue.

4.
Artículo en Inglés | MEDLINE | ID: mdl-25395698

RESUMEN

BACKGROUND: Diabetes mellitus characterized by hyperglycaemia could affect sperm quality as a result of increased oxidative stress. This study was performed to investigate the effects of red palm oil (RPO), aqueous rooibos tea extracts (RTE) as well as their combination (RPO + RTE) on sperm motility parameters in streptozotocin-induced diabetic rats. MATERIALS AND METHODS: Diabetes was induced by a single administration of streptozotocin (50 mg/kg) and the rats were treated with red palm oil (2 ml/day) and / or aqueous rooibos tea extract (2%) for 7 weeks. Sperm motility parameters were measured using Computer Assisted Sperm Analyzer (CASA). RESULTS: Hyperglycaemia negatively affected the sperm progressive motility significantly at p<0.05. There was a significant decrease (p<0.05) in sperm linearity (LIN) in the diabetic group when compared with the normal control group. RPO supplemented diabetic rats exhibited increased progressive sperm motility, sperm linearity (LIN) and wobble (WOB). Significant decreases (p<0.05) in straight line velocity (VSL) and average path velocity (VAP) of the sperms were observed in all the diabetic groups when compared to the control group. Significant (p<0.05) elevated levels of WOB and LIN were observed following RTE treatment and co-administration with RPO respectively. CONCLUSION: The present study suggests that red palm oil and / or rooibos administration exhibited no adverse effects on sperm motility parameters but rather showed some beneficial effects.


Asunto(s)
Arecaceae/química , Aspalathus , Astenozoospermia/prevención & control , Diabetes Mellitus Experimental/complicaciones , Aceites de Plantas/uso terapéutico , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Animales , Complicaciones de la Diabetes/prevención & control , Diabetes Mellitus Experimental/fisiopatología , Hiperglucemia/complicaciones , Masculino , Estrés Oxidativo , Aceite de Palma , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Aceites de Plantas/farmacología , Ratas Wistar , Espermatozoides/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA