Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RSC Adv ; 11(8): 4740-4750, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424379

RESUMEN

Currently, the total number of diabetic people worldwide is constantly increasing. Metformin (MET) is known to be a first-line antidiabetic drug with varied, wide-reaching applications. Concurrent administration of phytomedicines such as fenugreek extract with synthetic drugs is very common. It is reported that concomitant administration of fenugreek extract with metformin maintains lower blood glucose levels than metformin alone. In this work, an ecofriendly RP-HPLC method was established to study and compare the pharmacokinetics of metformin with and without the contemporary administration of fenugreek extract using rat as an animal model. In the developed method, a solvent mixture of 0.5 mM KH2PO4 solution : methanol (65 : 35, v/v) was used as a mobile phase and guaiphenesin was used as an internal standard. The plasma concentration-time curve was plotted, and non-compartmental pharmacokinetic analysis was performed using PKSolver. The results of the pharmacokinetic study showed that concurrent administration of fenugreek significantly increased the bioavailability of metformin and doubled the time required to reach the peak plasma concentration (T max). Moreover, the volume of drug distribution decreased by about 70%, while its rate of clearance decreased by about 55.96%. Accordingly, the administration of fenugreek in combination with metformin significantly affected the pharmacokinetics of metformin, and this combination will be very useful in controlling blood glucose levels in diabetic patients. The greenness of the method was assessed using the Analytical Eco-Scale, Analytical Method Volume Intensity (AMVI), and National Environmental Method Index (NEMI), and all results affirmed that the method can be considered to be ecological.

2.
Mar Drugs ; 18(7)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650455

RESUMEN

Thalassodendron ciliatum (Forssk.) Den Hartog is a seagrass belonging to the plant family Cymodoceaceae with ubiquitous phytoconstituents and important pharmacological potential, including antioxidant, antiviral, and cytotoxic activities. In this work, a new ergosterol derivative named thalassosterol (1) was isolated from the methanolic extract of T. ciliatum growing in the Red Sea, along with two known first-reported sterols, namely ergosterol (2) and stigmasterol (3), using different chromatographic techniques. The structure of the new compound was established based on 1D and 2D NMR spectroscopy and high-resolution mass spectrometry (HR-MS) and by comparison with the literature data. The new ergosterol derivative showed significant in vitro antiproliferative potential against the human cervical cancer cell line (HeLa) and human breast cancer (MCF-7) cell lines, with IC50 values of 8.12 and 14.24 µM, respectively. In addition, docking studies on the new sterol 1 explained the possible binding interactions with an aromatase enzyme; this inhibition is beneficial in both cervical and breast cancer therapy. A metabolic analysis of the crude extract of T. ciliatum using liquid chromatography combined with high-resolution electrospray ionization mass spectrometry (LC-ESI-HR-MS) revealed the presence of an array of phenolic compounds, sterols and ceramides, as well as di- and triglycerides.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Inhibidores de la Aromatasa/farmacología , Ergosterol/farmacología , Magnoliopsida , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/química , Inhibidores de la Aromatasa/química , Ergosterol/química , Humanos , Océano Índico , Células MCF-7/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Extractos Vegetales/química , Relación Estructura-Actividad
3.
Metabolites ; 10(1)2020 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31940785

RESUMEN

Many routes have been explored to search for effective, safe, and affordable alternatives to hazardous female contraceptives. Herbal extracts and their secondary metabolites are some of the interesting research areas to address this growing issue. This study aims to investigate the effects of ten different plant extracts on testicular spermatogenesis. The correlation between the chemical profile of these extracts and their in vivo effect on male reproductive system was evaluated using various techniques. Approximately 10% of LD50 of hydro-methanolic extracts were orally administrated to rats for 60 days. Semen parameters, sexual organ weights, and serum levels of male sex hormones in addition to testes histopathology, were evaluated. Moreover, metabolomic analysis using (LC-HRESIMS), multivariate analysis (PCA), immunohistochemistry (caspase-3 and ß-catenin), and a docking study were performed. Results indicated that three plant extracts significantly decreased epididymal sperm density and motility. Moreover, their effects on testicular cells were also assured by histopathological evaluations. Metabolomic profiling of the bioactive plant extracts showed the presence of diverse phytochemicals, mostly oleanane saponins, phenolic diterpenes, and lupane triterpenes. A docking study on caspase-3 enzyme showed that oleanane saponins possessed the highest binding affinity. An immunohistochemistry assay on ß-catenin and caspase-3 indicated that Albizzia lebbeck was the most active extract for decreasing immunoexpression of ß-catenin, while Rosmarinus officinalis showed the highest activity for increasing immunoexpression of caspase-3. The spermatogenesis decreasing the activity of A. lebbeck, Anagallis arvensis, and R. officinalis can be mediated via up-regulation of caspase-3 and down-regulation of ß-catenin existing in testis cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA