Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
NPJ Biofilms Microbiomes ; 10(1): 4, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238339

RESUMEN

Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA), are required for the structure and function of the retina. Several observational studies indicate that consumption of a diet with relatively high levels of n-3 PUFAs, such as those provided by fish oils, has a protective effect against the development of age-related macular degeneration. Given the accumulating evidence showing the role of gut microbiota in regulating retinal physiology and host lipid metabolism, we evaluated the potential of long-term dietary supplementation with the Gram-positive bacterium Lactobacillus helveticus strain VEL12193 to modulate the retinal n-3 PUFA content. A set of complementary approaches was used to study the impact of such a supplementation on the gut microbiota and host lipid/fatty acid (FA) metabolism. L. helveticus-supplementation was associated with a decrease in retinal saturated FAs (SFAs) and monounsaturated FAs (MUFAs) as well as an increase in retinal n-3 and omega-6 (n-6) PUFAs. Interestingly, supplementation with L. helveticus enriched the retina in C22:5n-3 (docosapentaenoic acid, DPA), C22:6n-3 (DHA), C18:2n-6 (linoleic acid, LA) and C20:3n-6 (dihomo gamma-linolenic acid, DGLA). Long-term consumption of L. helveticus also modulated gut microbiota composition and some changes in OTUs abundance correlated with the retinal FA content. This study provides a proof of concept that targeting the gut microbiota could be an effective strategy to modulate the retinal FA content, including that of protective n-3 PUFAs, thus opening paths for the design of novel preventive and/or therapeutical strategies for retinopathies.


Asunto(s)
Ácidos Grasos Omega-3 , Lactobacillus helveticus , Animales , Ratones , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-3/metabolismo , Lactobacillus helveticus/metabolismo , Disponibilidad Biológica , Dieta , Retina/química , Retina/metabolismo
2.
Nutr Neurosci ; 26(8): 706-719, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35694841

RESUMEN

BACKGROUND AND OBJECTIVE: We recently showed that perinatal exposure to diets with unbalanced n-6:n-3 polyunsaturated fatty acid (PUFA) ratios affects the olfactory mucosa (OM) fatty acid composition. To assess the repercussions of these modifications, we investigated the impact of diets unbalanced in n-3 PUFAs on the molecular composition and functionality of the OM in young mice. METHODS: After mating, female mice were fed diets either deficient in α-linolenic acid (LOW diet) or supplemented with n-3 long-chain PUFAs (HIGH diet) during the perinatal period. Weaned male offspring were then fed ad libitum with the same experimental diets for 5 weeks. At 8 weeks of age, olfactory behavior tests were performed in young mice. The fatty acid composition of OM and olfactory cilia, as well as the expression of genes involved in different cellular pathways, were analyzed. The electroolfactograms induced by odorant stimuli were recorded to assess the impact of diets on OM functionality. RESULTS AND CONCLUSION: Both diets significantly modified the fatty acid profiles of OM and olfactory cilia in young mice. They also induced changes in the expression of genes involved in olfactory signaling and in olfactory neuron maturation. The electroolfactogram amplitudes were reduced in mice fed the LOW diet. Nevertheless, the LOW diet and the HIGH diet did not affect mouse olfactory behavior. Our study demonstrated that consumption of diets deficient in or supplemented with n-3 PUFAs during the perinatal and postweaning periods caused significant changes in young mouse OM. However, these modifications did not impair their olfactory capacities.


Asunto(s)
Ácidos Grasos Omega-3 , Embarazo , Ratones , Animales , Masculino , Femenino , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos/metabolismo , Dieta , Suplementos Dietéticos , Mucosa Olfatoria/metabolismo
3.
Nutrients ; 14(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35956273

RESUMEN

Plasmalogens (Pls) are glycerophospholipids that play critical roles in the brain. Evidence supports the role of diet and that of the gut microbiota in regulating brain lipids. We investigated the impact of dietary intake of inulin-a soluble fiber used as prebiotic-on the Pl content of the cortex in mice. No global modification in the Pl amounts was observed when evaluated by gas chromatographic analysis of dimethyl acetals (DMAs). However, the analysis of individual molecular species of Pls by liquid chromatography revealed a reduced abundance of major species of ethanolamine Pls (PlsEtn)-PE(P-18:0/22:6) and PE(P-34:1)-in the cortex of mice fed a diet supplemented with inulin. DMA and expression levels of genes (Far-1, Gnpat, Agps, Pla2g6 and Tmem86b) encoding key enzymes of Pl biosynthesis or degradation were not altered in the liver and in the cortex of mice exposed to inulin. In addition, the fatty acid profile and the amount of lyso forms derived from PlsEtn were not modified in the cortex by inulin consumption. To conclude, inulin affects the brain levels of major PlsEtn and further investigation is needed to determine the exact molecular mechanisms involved.


Asunto(s)
Inulina , Plasmalógenos , Animales , Encéfalo/metabolismo , Suplementos Dietéticos , Fosfolipasas A2 Grupo VI/metabolismo , Inulina/metabolismo , Hígado/metabolismo , Ratones , Plasmalógenos/metabolismo
4.
J Oleo Sci ; 71(8): 1117-1133, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35922928

RESUMEN

The present study provides the fatty acid, tocopherol, phytosterol, and polyphenol profiles of some Mediterranean oils extracted from pumpkin, melon, and black cumin seed oils and those of dietary argan seed oil. Gas chromatography analysis revealed that oleic and linoleic acids were the most abundant fatty acids. Argan and melon seed oils exhibited the highest levels of oleic acid (47.32±0.02%) and linoleic acid (58.35±0.26%), respectively. In terms of tocopherols, melon seed oil showed the highest amount (652.1±3.26 mg/kg) with a predominance of γ-tocopherol (633.1±18.81 mg/kg). The phytosterol content varied between 2237.00±37.55 µg/g for argan oil to 6995.55±224.01 µg/g for melon seed oil. High Performance Liquid Chromatography analysis also revealed the presence of several polyphenols: vanillin (0.59 mg equivalents Quercetin/100 g) for melon seed oil, and p-hydroxycinnamic acid (0.04 mg equivalents Quercetin/100 g), coumarine (0.05 mg equivalents Quercetin/100 g), and thymoquinone (1.2 mg equivalents Quercetin/100 g) for black cumin seed oil. The "Kit Radicaux Libres" (KRL) assay used to evaluate the scavenging properties of the oils showed that black cumin seed oil was the most efficient. On the light of the richness of all Mediterranean oil samples in bioactive compounds, the seed oils studied can be considered as important sources of nutrients endowed with cytoprotective properties which benefits in preventing age-related diseases which are characterized by an enhanced oxidative stress.


Asunto(s)
Fitosteroles , Tocoferoles , Ácidos Grasos/análisis , Nutrientes/análisis , Aceites de Plantas/química , Polifenoles/análisis , Quercetina , Esteroles/análisis , Tocoferoles/análisis
5.
Antioxidants (Basel) ; 11(5)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35624701

RESUMEN

Polyunsaturated fatty acids (PUFAs) are a class of fatty acids that are closely associated with the development and function of the brain. The most abundant PUFA is docosahexaenoic acid (DHA, 22:6 n-3). In humans, low plasmatic concentrations of DHA have been associated with impaired cognitive function, low hippocampal volumes, and increased amyloid deposition in the brain. Several studies have reported reduced brain DHA concentrations in Alzheimer's disease (AD) patients' brains. Although a number of epidemiological studies suggest that dietary DHA consumption may protect the elderly from developing cognitive impairment or dementia including AD, several review articles report an inconclusive association between omega-3 PUFAs intake and cognitive decline. The source of these inconsistencies might be because DHA is highly oxidizable and its accessibility to the brain is limited by the blood-brain barrier. Thus, there is a pressing need for new strategies to improve DHA brain supply. In the present study, we show for the first time that the intranasal administration of nanovectorized DHA reduces Tau phosphorylation and restores cognitive functions in two complementary murine models of AD. These results pave the way for the development of a new approach to target the brain with DHA for the prevention or treatment of this devastating disease.

6.
Steroids ; 183: 109032, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35381271

RESUMEN

Peroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7ß-hydroxycholesterol (7ß-OHC; 50 µM, 24 h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts. The capacity of milk thistle seed oil (MTSO, 100 µg/mL) as well as α-tocopherol (400 µM; reference cytoprotective agent) to counteract the toxic effects of 7ß-OHC, mainly at the peroxisomal level were evaluated. The impacts of 7ß-OHC, in the presence or absence of MTSO or α-tocopherol, were studied with complementary methods: measurement of cell density and viability, quantification of reactive oxygen species (ROS) production and transmembrane mitochondrial potential (ΔΨm), evaluation of peroxisomal mass as well as topographic, morphologic and functional peroxisomal changes. Our results indicate that 7ß-OHC induces a loss of cell viability and a decrease of cell adhesion associated with ROS overproduction, alterations of mitochondrial ultrastructure, a drop of ΔΨm, and several peroxisomal modifications. In the presence of 7ß-OHC, comparatively to untreated cells, important quantitative and qualitative peroxisomal modifications were also identified: a) a reduced number of peroxisomes with abnormal sizes and shapes, mainly localized in cytoplasmic vacuoles, were observed; b) the peroxisomal mass was decreased as indicated by lower protein and mRNA levels of the peroxisomal ABCD3 transporter; c) lower mRNA level of Pex5 involved in peroxisomal biogenesis as well as higher mRNA levels of Pex13 and Pex14, involved in peroxisomal biogenesis and/or pexophagy, was found; d) lower levels of ACOX1 and MFP2 enzymes, implicated in peroxisomal ß-oxidation, were detected; e) higher levels of very-long-chain fatty acids, which are substrates of peroxisomal ß-oxidation, were found. These different cytotoxic effects were strongly attenuated by MTSO, in the same range of order as with α-tocopherol. These findings underline the interest of MTSO and α-tocopherol in the prevention of peroxisomal damages (pexotherapy).


Asunto(s)
Silybum marianum , alfa-Tocoferol , Animales , Antioxidantes/farmacología , Flavonoides , Humanos , Hidroxicolesteroles , Ratones , Silybum marianum/metabolismo , Mioblastos/metabolismo , Aceites de Plantas , ARN Mensajero , Especies Reactivas de Oxígeno/metabolismo , alfa-Tocoferol/farmacología
7.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681683

RESUMEN

Age-related macular degeneration (AMD) is an eye disease that is characterized by damage to the central part of the retina, the macula, and that affects millions of people worldwide. At an advanced stage, a blind spot grows in the center of vision, severely handicapping patients with this degenerative condition. Despite therapeutic advances thanks to the use of anti-VEGF, many resistance mechanisms have been found to accentuate the visual deficit. In the present study, we explored whether supplementation with Resvega®, a nutraceutical formulation composed of omega-3 fatty acids and resveratrol, a well-known polyphenol in grapes, was able to counteract laser-induced choroidal neovascularization (CNV) in mice. We highlight that Resvega® significantly reduced CNV in mice compared with supplementations containing omega-3 or resveratrol alone. Moreover, a proteomic approach confirmed that Resvega® could counteract the progression of AMD through a pleiotropic effect targeting key regulators of neoangiogenesis in retina cells in vivo. These events were associated with an accumulation of resveratrol metabolites within the retina. Therefore, a supplementation of omega-3/resveratrol could improve the management or slow the progression of AMD in patients with this condition.


Asunto(s)
Neovascularización Coroidal/prevención & control , Suplementos Dietéticos , Ácidos Grasos Omega-3/farmacología , Degeneración Macular/prevención & control , Resveratrol/farmacología , Animales , Neovascularización Coroidal/dietoterapia , Modelos Animales de Enfermedad , Ácidos Grasos Omega-3/uso terapéutico , Femenino , Degeneración Macular/dietoterapia , Degeneración Macular/patología , Ratones , Proteómica , Resveratrol/uso terapéutico
8.
Nutrients ; 13(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34684356

RESUMEN

BACKGROUND: Carotenoids and docosahexaenoic acid (DHA) were identified as essential components for eye health and are both naturally present in eggs. OBJECTIVE: We aimed to evaluate the effect of the daily consumption of two eggs enriched with lutein/zeaxanthin and DHA on macular pigment optical density (MPOD) and on circulating xanthophyll and fatty acid concentrations in healthy participants. METHODS: Ninety-nine healthy volunteers consumed either two standard eggs or two enriched eggs per day for 4 months. MPOD was measured at baseline (V0) and at follow-up (V4) using a modified confocal scanning laser ophthalmoscope (primary outcome). Blood samples were collected to determine total plasma and lipoprotein fatty acids and lutein/zeaxanthin compositions at V0 and V4 (secondary outcomes). RESULTS: A slight but significant increase in MPOD was observed for all study participants consuming two eggs per day for 4 months at all eccentricities (0.5°, 1°, 2°, and 4°). Plasma and lipoprotein lutein, zeaxanthin, and DHA concentrations significantly increased in both groups but were greater in the enriched group (for the enriched group (V0 vs. V4): lutein, 167 vs. 369 ng/mL; zeaxanthin, 17.7 vs. 29.2 ng/mL; DHA, 1.89 vs. 2.56% of total fatty acids). Interestingly, lutein from high-density lipoprotein (HDL) was strongly correlated with MPOD at 0.5 and 1° eccentricities (rho = 0.385, p = 0.008, and rho = 0.461, p = 0.001, respectively). CONCLUSIONS: MPOD was slightly increased in both groups. Lutein, zeaxanthin, and DHA plasma concentrations were strongly enhanced in the enriched group compared with the standard group. A significant correlation was found between MPOD level and lutein concentration in HDL.


Asunto(s)
Ácidos Docosahexaenoicos/sangre , Alimentos Fortificados , Luteína/sangre , Pigmento Macular/sangre , Adulto , Eritrocitos/metabolismo , Femenino , Humanos , Lipoproteínas/sangre , Masculino , Fenómenos Ópticos , Cooperación del Paciente , Xantófilas/sangre , Adulto Joven , Zeaxantinas/sangre
9.
Nutrients ; 13(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34579093

RESUMEN

To prevent ocular pathologies, new generation of dietary supplements have been commercially available. They consist of nutritional supplement mixing components known to provide antioxidative properties, such as unsaturated fatty acid, resveratrol or flavonoids. However, to date, only one preclinical study has evaluated the impact of a mixture mainly composed of those components (Nutrof Total®) on the retina and demonstrated that in vivo supplementation prevents the retina from structural and functional injuries induced by light. Considering the crucial role played by the glial Müller cells in the retina, particularly to regulate the glutamate cycle to prevent damage in oxidative stress conditions, we questioned the impact of this ocular supplement on the glutamate metabolic cycle. To this end, various molecular aspects associated with the glutamate/glutamine metabolism cycle in Müller cells were investigated on primary Müller cells cultures incubated, or not, with the commercially mix supplement before being subjected, or not, to oxidative conditions. Our results demonstrated that in vitro supplementation provides guidance of the glutamate/glutamine cycle in favor of glutamine synthesis. These results suggest that glutamine synthesis is a crucial cellular process of retinal protection against oxidative damages and could be a key step in the previous in vivo beneficial results provided by the dietary supplementation.


Asunto(s)
Antioxidantes/farmacología , Células Ependimogliales/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Glutamina/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Retina/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/farmacología , Células Ependimogliales/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/farmacología , Ratones
11.
Nutrients ; 13(3)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806985

RESUMEN

Diet shapes the gut microbiota which impacts hepatic lipid metabolism. Modifications in liver fat content are associated with metabolic disorders. We investigated the extent of dietary fat and fiber-induced alterations in the composition of gut microbiota and hepatic fatty acids (FAs). Mice were fed a purified low-fat diet (LFD) or high-fat diet (HFD) containing non-soluble fiber cellulose or soluble fiber inulin. HFD induced hepatic decreases in the amounts of C14:0, C16:1n-7, C18:1n-7 and increases in the amounts of C17:0, C20:0, C16:1n-9, C22:5n-3, C20:2n-6, C20:3n-6, and C22:4n-6. When incorporated in a LFD, inulin poorly affected the profile of FAs. However, when incorporated in a HFD, it (i) specifically led to an increase in the amounts of hepatic C18:0, C22:0, total polyunsaturated FAs (PUFAs), total n-6 PUFAs, C18:3n-3, and C18:2n-6, (ii) exacerbated the HFD-induced increase in the amount of C17:0, and (iii) prevented the HFD-induced increases in C16:1n-9 and C20:3n-6. Importantly, the expression/activity of some elongases and desaturases, as well as the gut microbiota composition, were impacted by the dietary fat and fiber content. To conclude, inulin modulated gut microbiota and hepatic fatty acid composition, and further investigations will determine whether a causal relationship exists between these two parameters.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Inulina/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Animales , Glucemia/metabolismo , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Dieta con Restricción de Grasas , Grasas de la Dieta/administración & dosificación , Fibras de la Dieta/administración & dosificación , Ácidos Grasos Insaturados/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/aislamiento & purificación , Triglicéridos/sangre
12.
Colloids Surf B Biointerfaces ; 197: 111432, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33166936

RESUMEN

Oil-in-water nanoemulsions are used in numerous biomedical applications as delivery systems. The droplet size in the nanometer range and their composition were extensively developed for carrying and enhancing the absorption of lipophilic drugs and lipids of interest. In the present study, critical parameters involved in the spontaneous nanoemulsification process such as the temperature, the oil type, the surfactant-to-oil and water-to-oil ratios were investigated. The aim was to design a solvent-free procedure for the spontaneous nanoemulsification at a low temperature of a large variety of triglycerides including vegetable oils. Nanoemulsification of medium-chain triglyceride (MCT) was not dependent on the temperature while nanodroplets of long-chain triglycerides (LCT) were only obtained by reaching the cloud point of ethoxylated surfactant Kolliphor® HS15. The molar volume of triglycerides was considered as a predictive parameter governing both, the spontaneous nanoemulsification at low temperature and the Ostwald ripening rate. The physical mixture of MCT and LCT was a promising strategy to prepare stable and fine nanoemulsions at 37 °C. They were characterized by a hydrodynamic diameter comprised between 20 and 30 nm and a narrow size distribution. These findings pave the way to new applications for the parenteral nutrition and the delivery of thermosensitive drugs and lipophilic molecules such as antioxidants.


Asunto(s)
Aceites de Plantas , Tensoactivos , Emulsiones , Tamaño de la Partícula , Triglicéridos
13.
J Lipid Res ; 61(12): 1733-1746, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33127836

RESUMEN

Spatial changes of FAs in the retina in response to different dietary n-3 formulations have never been explored, although a diet rich in EPA and DHA is recommended to protect the retina against the effects of aging. In this study, Wistar rats were fed for 8 weeks with balanced diet including either EPA-containing phospholipids (PLs), EPA-containing TGs, DHA-containing PLs, or DHA-containing TGs. Qualitative changes in FA composition of plasma, erythrocytes, and retina were evaluated by gas chromatography-flame ionization detector. Following the different dietary intakes, changes to the quantity and spatial organization of PC and PE species in retina were determined by LC coupled to MS/MS and MALDI coupled to MS imaging. The omega-3 content in the lipids of plasma and erythrocytes suggests that PLs as well as TGs are good omega-3 carriers for retina. However, a significant increase in DHA content in retina was observed, especially molecular species as di-DHA-containing PC and PE, as well as an increase in very long chain PUFAs (more than 28 carbons) following PL-EPA and TG-DHA diets only. All supplemented diets triggered spatial organization changes of DHA in the photoreceptor layer around the optic nerve. Taken together, these findings suggest that dietary omega-3 supplementation can modify the content of FAs in the rat retina.


Asunto(s)
Ácidos Grasos Omega-3/farmacocinética , Retina/metabolismo , Animales , Disponibilidad Biológica , Ácidos Grasos Omega-3/metabolismo , Masculino , Ratas
14.
Sci Rep ; 9(1): 7930, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138879

RESUMEN

Extremely preterm infants are at high risk for retinopathy of prematurity (ROP), a potentially blinding disease characterized by abnormalities in retinal vascularization. Whereas animal studies revealed that n-3 polyunsaturated fatty acids (PUFAs) may be of benefit in preventing ROP, human studies conducted on preterm infants during the 1st weeks of life showed no association between blood n-3 PUFA bioavailability and ROP incidence and/or severity, probably because of the influence of nutrition on the lipid status of infants. In the OmegaROP prospective cohort study, we characterized the erythrocyte concentrations of PUFAs in preterm infants aged less than 29 weeks gestational age (GA) without any nutritional influence. We show that GA is positively associated with the erythrocyte n-6 to n-3 PUFA ratio, and particularly with the ratio of arachidonic acid (AA) to docosahexaenoic acid (DHA), in infants with ROP. A time-dependent accumulation of AA at the expense of DHA seems to occur in utero in erythrocytes of preterm infants who will develop ROP, thus reinforcing previous data on the beneficial properties of DHA on this disease. In addition, preliminary data on maternal erythrocyte membrane lipid concentrations suggest modifications in placental transfer of fatty acids. Documenting the erythrocyte AA to DHA ratio at birth in larger cohorts might be useful to set up new prognostic factors for ROP.


Asunto(s)
Membrana Eritrocítica/patología , Ácidos Grasos Insaturados/análisis , Retinopatía de la Prematuridad/patología , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-6/análisis , Femenino , Edad Gestacional , Humanos , Recién Nacido , Recien Nacido Prematuro , Estudios Prospectivos , Retinopatía de la Prematuridad/diagnóstico
15.
Artículo en Inglés | MEDLINE | ID: mdl-29628048

RESUMEN

The peripheral olfactory tissue (OT) plays a primordial role in the detection and transduction of olfactory information. Recent proteomic and transcriptomic studies have provided valuable insight into proteins and RNAs expressed in this tissue. Paradoxically, there is little information regarding the lipid composition of mammalian OT. To delve further into this issue, using a set of complementary state-of-the-art techniques, we carried out a comprehensive analysis of OT lipid composition in rats and mice fed with standard diets. The results showed that phospholipids are largely predominant, the major classes being phosphatidylcholine and phosphatidylethanolamine. Two types of plasmalogens, plasmenyl-choline and plasmenyl-ethanolamine, as well as gangliosides were also detected. With the exception of sphingomyelin, substantial levels of n-3 polyunsaturated fatty acids, mainly docosahexaenoic acid (22:6n-3; DHA), were found in the different phospholipid classes. These findings demonstrate that the rodent OT shares several features in common with other neural tissues, such as the brain and retina.


Asunto(s)
Ácidos Grasos/análisis , Lípidos/análisis , Mucosa Olfatoria/química , Animales , Cromatografía Liquida , Gangliósidos/análisis , Gangliósidos/química , Lípidos/química , Masculino , Ratones Endogámicos C57BL , Fosfolípidos/análisis , Fosfolípidos/química , Plasmalógenos/análisis , Plasmalógenos/química , Ratas Wistar , Espectrometría de Masa por Ionización de Electrospray
16.
Artículo en Inglés | MEDLINE | ID: mdl-27926457

RESUMEN

The relative amounts of arachidonic acid (AA) and docosahexaenoic acid (DHA) govern the different functions of the brain. Their brain levels depend on structures considered, on fatty acid dietary supply and the age of animals. To have a better overview of the different models available in the literature we here compared the brain fatty acid composition in various mice models (C57BL/6J, CD1, Fat-1, SAMP8 mice) fed with different n-3 PUFA diets (deficient, balanced, enriched) in adults and aged animals. Our results demonstrated that brain AA and DHA content is 1) structure-dependent; 2) strain-specific; 3) differently affected by dietary approaches when compared to genetic model of PUFA modulation; 4) different in n-3 PUFA deficient aged C57BL6/J when compared to SAMP8 mouse model of aging. From these experiments, we highlight the difficulty to compare results obtained in different mouse models, different strains, different brain regions and different ages.


Asunto(s)
Ácido Araquidónico/química , Química Encefálica , Grasas Insaturadas en la Dieta/administración & dosificación , Ácidos Docosahexaenoicos/química , Animales , Tronco Encefálico/química , Cerebelo/química , Corteza Cerebral/química , Femenino , Hipocampo/química , Hipotálamo/química , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Teóricos , Corteza Prefrontal/química
17.
Int J Food Sci Nutr ; 66(2): 222-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25657100

RESUMEN

Lutein and docosahexaenoic acid (DHA) are associated with the prevention of age-related macular degeneration (AMD). Since microalgae are potent natural sources of these nutrients, their nutritional value should be evaluated based on the bioavailability of lutein and DHA for the retina via the plasmatic compartment. In this study, quail were fed for 5 months either with a diet supplemented or deprived with microalgae rich in lutein and DHA. In the microalgae-fed group, the retinal concentrations of lutein and zeaxanthin gradually increased whereas in plasma, these compounds started to increase from the first month of supplementation. We also observed a significant increase in retinal and plasmatic levels of DHA in the microalgae-fed group. In conclusion, the plasmatic and retinal contents of lutein and DHA were significantly increased in quail fed with lutein- and DHA-rich microalgae. Food fortification with microalgae may be an innovative way to increase lutein and DHA consumption in humans.


Asunto(s)
Suplementos Dietéticos , Ácidos Docosahexaenoicos/metabolismo , Luteína/metabolismo , Degeneración Macular , Microalgas/química , Retina/metabolismo , Animales , Disponibilidad Biológica , Dieta , Ácidos Docosahexaenoicos/sangre , Ácidos Docosahexaenoicos/farmacocinética , Humanos , Luteína/sangre , Luteína/farmacocinética , Degeneración Macular/metabolismo , Degeneración Macular/prevención & control , Modelos Animales , Codorniz , Zeaxantinas/metabolismo
18.
Psychoneuroendocrinology ; 53: 82-93, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25614359

RESUMEN

Epidemiological observations report an increase in fat consumption associated with low intake of n-3 relative to n-6 polyunsaturated fatty acids (PUFAs) in women of childbearing age. However, the impact of these maternal feeding habits on cognitive function in the offspring is unknown. This study aims to investigate the impact of early exposure to a high-fat diet (HFD) with an unbalanced n-6/n-3 PUFAs ratio on hippocampal function in adult rats. Furthermore, we explored the effects of perinatal HFD combined with exposure to HFD after weaning. Dams were fed a control diet (C, 12% of energy from lipids, n-6/n-3 PUFAs ratio: 5) or HFD (HF, 39% of energy from lipids, n-6/n-3 PUFAs ratio: 39) throughout gestation and lactation. At weaning, offspring were placed either on control (C-C, HF-C) or high-fat (HF-HF) diets. In adulthood, hippocampus-dependent memory was assessed using the water-maze task and potential hippocampal alterations were determined by studying PUFA levels, gene expression, neurogenesis and astrocyte morphology. Perinatal HFD induced long-lasting metabolic alterations and some changes in gene expression in the hippocampus, but had no effect on memory. In contrast, spatial memory was impaired in animals exposed to HFD during the perinatal period and maintained on this diet. HF-HF rats also exhibited low n-3 and high n-6 PUFA levels, decreased neurogenesis and downregulated expression of several plasticity-related genes in the hippocampus. To determine the contribution of the perinatal diet to the memory deficits reported in HF-HF animals, an additional experiment was conducted in which rats were only exposed to HFD starting at weaning (C-HF). Interestingly, memory performance in this group was similar to controls. Overall, our results suggest that perinatal exposure to HFD with an unbalanced n-6/n-3 ratio sensitizes the offspring to the adverse effects of subsequent high-fat intake on hippocampal function.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Hipocampo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Memoria Espacial/efectos de los fármacos , Animales , Animales Recién Nacidos , Femenino , Lactancia , Embarazo , Ratas , Ratas Wistar , Destete
19.
Biochimie ; 95(4): 903-11, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23266358

RESUMEN

Numerous studies have reported the implication of calcium-independent phospholipase A2 (iPLA2) in various biological mechanisms. Most of these works have used in vitro models and only a few have been carried out in vivo on iPLA2(-/-) mice. The functions of iPLA2 have been investigated in vivo in the heart, brain, pancreatic islets, and liver, but not in the retina despite its very high content in phospholipids. Phospholipids in the retina are known to be involved in several various key mechanisms such as visual transduction, inflammation or apoptosis. In order to investigate the implication of iPLA2 in these processes, this work was aimed to build an in vivo model of iPLA2 activity inhibition. After testing the efficacy of different chemical inhibitors of iPLA2, we have validated the use of bromoenol lactone (BEL) in vitro and in vivo for inhibiting the activity of iPLA2. Under in vivo conditions, a dose of 6µg/g of body weight of BEL in mice displayed a 50%-inhibition of retinal iPLA2 activity 8-16h after intraperitoneal administration. Delivering the same dose twice a day to animals was successful in producing a similar inhibition that was stable over one week. In summary, this novel mouse model exhibits a significant inhibition of retinal iPLA2 activity. This model of chemical inhibition of iPLA2 will be useful in future studies focusing on iPLA2 functions in the retina.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Fosfolipasas A2 Grupo VI/antagonistas & inhibidores , Retina/enzimología , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Homeostasis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Retina/metabolismo , Factores de Tiempo
20.
Graefes Arch Clin Exp Ophthalmol ; 250(2): 211-22, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21894532

RESUMEN

BACKGROUND: This study was conducted to evaluate whether polyunsaturated fatty acids (PUFA) such as γ-linolenic acid (GLA) and eicosapentaenoic acid (EPA), as found in the diet, may affect the lipid composition of conjunctival epithelium and whether these modifications affect prostaglandin (PG) production after inflammatory stimulation. METHODS: Chang and IOBA-NHC conjunctival human cells were treated with GLA and/or EPA at 5, 10, 20, 30, 40, or 50 µg/ml for 72 h and then were stimulated with interferon-gamma (IFN-γ) for 48 h. Changes in the composition of neutral lipids and phospholipids were monitored by gas chromatography. PGE1 and PGE2 levels were measured by enzyme immunoassay. RESULTS: PUFA supplementations in the culture medium induced incorporation of these fatty acids and of their metabolites in neutral lipids and phospholipids of the conjunctival cells. The fatty acid composition of neutral lipids and phospholipids was not affected by stimulation with IFN-γ. The production of PGE1 and PGE2 was affected by GLA supplementation whereas it was not modified by EPA supplementation. A combined supplementation of EPA and GLA did not change the production of PGE1 but decreased the production of PGE2. CONCLUSIONS: These results suggest that modulation of fatty acid composition and PG production by PUFA supplementation is possible in the conjunctival epithelium, which is an important site of inflammation in dry eye syndrome.


Asunto(s)
Alprostadil/metabolismo , Conjuntiva/efectos de los fármacos , Dinoprostona/metabolismo , Ácido Eicosapentaenoico/farmacología , Metabolismo de los Lípidos , Fosfolípidos/metabolismo , Ácido gammalinolénico/farmacología , Línea Celular , Cromatografía de Gases , Conjuntiva/citología , Conjuntiva/metabolismo , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Humanos , Técnicas para Inmunoenzimas , Interferón gamma/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA