Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nutrients ; 13(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668787

RESUMEN

Epidemiological studies have shown a dramatic increase in the incidence and the prevalence of allergic diseases over the last several decades. Environmental triggers including risk factors (e.g., pollution), the loss of rural living conditions (e.g., farming conditions), and nutritional status (e.g., maternal, breastfeeding) are considered major contributors to this increase. The influences of these environmental factors are thought to be mediated by epigenetic mechanisms which are heritable, reversible, and biologically relevant biochemical modifications of the chromatin carrying the genetic information without changing the nucleotide sequence of the genome. An important feature characterizing epigenetically-mediated processes is the existence of a time frame where the induced effects are the strongest and therefore most crucial. This period between conception, pregnancy, and the first years of life (e.g., first 1000 days) is considered the optimal time for environmental factors, such as nutrition, to exert their beneficial epigenetic effects. In the current review, we discussed the impact of the exposure to bacteria, viruses, parasites, fungal components, microbiome metabolites, and specific nutritional components (e.g., polyunsaturated fatty acids (PUFA), vitamins, plant- and animal-derived microRNAs, breast milk) on the epigenetic patterns related to allergic manifestations. We gave insight into the epigenetic signature of bioactive milk components and the effects of specific nutrition on neonatal T cell development. Several lines of evidence suggest that atypical metabolic reprogramming induced by extrinsic factors such as allergens, viruses, pollutants, diet, or microbiome might drive cellular metabolic dysfunctions and defective immune responses in allergic disease. Therefore, we described the current knowledge on the relationship between immunometabolism and allergy mediated by epigenetic mechanisms. The knowledge as presented will give insight into epigenetic changes and the potential of maternal and post-natal nutrition on the development of allergic disease.


Asunto(s)
Epigénesis Genética/inmunología , Hipersensibilidad , Fenómenos Fisiológicos Nutricionales del Lactante , Fenómenos Fisiologicos Nutricionales Maternos , Femenino , Humanos , Recién Nacido , Embarazo
2.
Int J Mol Sci ; 20(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30823645

RESUMEN

Maternal diet modifies epigenetic programming in offspring, a potentially critical factor in the immune dysregulation of modern societies. We previously found that prenatal fish oil supplementation affects neonatal T-cell histone acetylation of genes implicated in adaptive immunity including PRKCZ, IL13, and TBX21. In this study, we measured H3 and H4 histone acetylation levels by chromatin immunoprecipitation in 173 term placentas collected in the prospective birth cohort, ALADDIN, in which information on lifestyle and diet is thoroughly recorded. In anthroposophic families, regular olive oil usage during pregnancy was associated with increased H3 acetylation at FOXP3 (p = 0.004), IL10RA (p = 0.008), and IL7R (p = 0.007) promoters, which remained significant after adjustment by offspring gender. Furthermore, maternal fish consumption was associated with increased H4 acetylation at the CD14 gene in placentas of female offspring (p = 0.009). In conclusion, prenatal olive oil intake can affect placental histone acetylation in immune regulatory genes, confirming previously observed pro-acetylation effects of olive oil polyphenols. The association with fish consumption may implicate ω-3 polyunsaturated fatty acids present in fish oil. Altered histone acetylation in placentas from mothers who regularly include fish or olive oil in their diets could influence immune priming in the newborn.


Asunto(s)
Aceites de Pescado/farmacología , Histonas/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Aceite de Oliva/farmacología , Placenta/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Femenino , Aceites de Pescado/administración & dosificación , Aceites de Pescado/metabolismo , Productos Pesqueros , Humanos , Inmunidad Innata/genética , Interleucina-13/genética , Interleucina-13/metabolismo , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Aceite de Oliva/administración & dosificación , Placenta/efectos de los fármacos , Embarazo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
3.
PLoS One ; 11(12): e0167453, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27977724

RESUMEN

Helminth infections and allergic diseases are associated with IgE hyperresponsiveness but the genetics of this phenotype remain to be defined. Susceptibility to Ascaris lumbricoides infection and antibody levels to this helminth are associated with polymorphisms in locus 13q33-34. We aimed to explore this and other genomic regions to identify genetic variants associated with the IgE responsiveness in humans. Forty-eight subjects from Cartagena, Colombia, with extreme values of specific IgE to Ascaris and ABA-1, a resistance marker of this nematode, were selected for targeted resequencing. Burden analyses were done comparing extreme groups for IgE values. One-hundred one SNPs were genotyped in 1258 individuals of two well-characterized populations from Colombia and Sweden. Two low-frequency coding variants in the gene encoding the Acidic Mammalian Chitinase (CHIA rs79500525, rs139812869, tagged by rs10494133) were found enriched in high IgE responders to ABA-1 and confirmed by genetic association analyses. The SNP rs4950928 in the Chitinase 3 Like 1 gene (CHI3L1) was associated with high IgE to ABA-1 in Colombians and with high IgE to Bet v 1 in the Swedish population. CHIA rs10494133 and ABDH13 rs3783118 were associated with IgE responses to Ascaris. SNPs in the Tumor Necrosis Factor Superfamily Member 13b gene (TNFSF13B) encoding the cytokine B cell activating Factor were associated with high levels of total IgE in both populations. This is the first report on the association between low-frequency and common variants in the chitinases-related genes CHIA and CHI3L1 with the intensity of specific IgE to ABA-1 in a population naturally exposed to Ascaris and with Bet v 1 in a Swedish population. Our results add new information about the genetic influences of human IgE responsiveness; since the genes encode for enzymes involved in the immune response to parasitic infections, they could be helpful for understanding helminth immunity and allergic responses. We also confirmed that TNFSF13B has an important and conserved role in the regulation of total IgE levels, which supports potential evolutionary links between helminth immunity and allergic response.


Asunto(s)
Alérgenos/inmunología , Antígenos de Plantas/inmunología , Proteína 1 Similar a Quitinasa-3/genética , Quitinasas/genética , Proteínas del Helminto/inmunología , Hipersensibilidad/genética , Inmunoglobulina E/genética , Adolescente , Adulto , Femenino , Humanos , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Masculino , Persona de Mediana Edad , Polen/inmunología , Adulto Joven
4.
Parasitol Int ; 65(4): 336-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27094225

RESUMEN

Proanthocyanidins (PAC) are a class of plant secondary metabolites commonly found in the diet that have shown potential to control gastrointestinal nematode infections. The anti-parasitic mechanism(s) of PAC remain obscure, however the protein-binding properties of PAC suggest that disturbance of key enzyme functions may be a potential mode of action. Glutathione-S-transferases (GSTs) are essential for parasite detoxification and have been investigated as drug and vaccine targets. Here, we show that purified PAC strongly inhibit the activity of both recombinant and native GSTs from the parasitic nematode Ascaris suum. As GSTs are involved in detoxifying xenobiotic substances within the parasite, we hypothesised that this inhibition may render parasites hyper-susceptible to anthelmintic drugs. Migration inhibition assays with A. suum larvae demonstrated that the potency of levamisole (LEV) and ivermectin (IVM) were significantly increased in the presence of PAC purified from pine bark (4.6-fold and 3.2-fold reduction in IC50 value for LEV and IVM, respectively). Synergy analysis revealed that the relationship between PAC and LEV appeared to be synergistic in nature, suggesting a specific enhancement of LEV activity, whilst the relationship between PAC and IVM was additive rather than synergistic, suggesting independent actions. Our results demonstrate that these common dietary compounds may increase the efficacy of synthetic anthelmintic drugs in vitro, and also suggest one possible mechanism for their well-known anti-parasitic activity.


Asunto(s)
Antihelmínticos/farmacología , Ascariasis/tratamiento farmacológico , Ascaris suum/efectos de los fármacos , Pinus sylvestris/química , Proantocianidinas/farmacología , Trifolium/química , Animales , Antihelmínticos/química , Antihelmínticos/aislamiento & purificación , Ascariasis/parasitología , Ascaris suum/citología , Sinergismo Farmacológico , Flores/química , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/metabolismo , Proteínas del Helminto/antagonistas & inhibidores , Proteínas del Helminto/metabolismo , Ivermectina/farmacología , Larva , Levamisol/farmacología , Corteza de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Proantocianidinas/química , Proantocianidinas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA