Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cortex ; 157: 211-230, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36335821

RESUMEN

Brain sensory processing is not passive, but is rather modulated by our internal state. Different research methods such as non-invasive imaging methods and intracranial recording of the local field potential (LFP) have been used to study to what extent sensory processing and the auditory cortex in particular are modulated by selective attention. However, at the level of the single- or multi-units the selective attention in humans has not been tested. In addition, most previous research on selective attention has explored externally-oriented attention, but attention can be also directed inward (i.e., internal attention), like spontaneous self-generated thoughts and mind-wandering. In the present study we had a rare opportunity to record multi-unit activity (MUA) in the auditory cortex of a patient. To complement, we also analyzed the LFP signal of the macro-contact in the auditory cortex. Our experiment consisted of two conditions with periodic beeping sounds. The participants were asked either to count the beeps (i.e., an "external attention" condition) or to recall the events of the previous day (i.e., an "internal attention" condition). We found that the four out of seven recorded units in the auditory cortex showed increased firing rates in "external attention" compared to "internal attention" condition. The beginning of this attentional modulation varied across multi-units between 30-50 msec and 130-150 msec from stimulus onset, a result that is compatible with an early selection view. The LFP evoked potential and induced high gamma activity both showed attentional modulation starting at about 70-80 msec. As the control, for the same experiment we recorded MUA activity in the amygdala and hippocampus of two additional patients. No major attentional modulation was found in the control regions. Overall, we believe that our results provide new empirical information and support for existing theoretical views on selective attention and spontaneous self-generated cognition.


Asunto(s)
Corteza Auditiva , Humanos , Corteza Auditiva/fisiología , Atención/fisiología , Potenciales Evocados , Mapeo Encefálico/métodos , Encéfalo , Percepción Auditiva/fisiología , Estimulación Acústica , Potenciales Evocados Auditivos
2.
Brain ; 139(Pt 12): 3084-3091, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27797807

RESUMEN

Gamma oscillations play a pivotal role in multiple cognitive functions. They enable coordinated activity and communication of local assemblies, while abnormalities in gamma oscillations exist in different neurological and psychiatric diseases. Thus, a specific rectification of gamma synchronization could potentially compensate the deficits in pathological conditions. Previous experiments have shown that animals can voluntarily modulate their gamma power through operant conditioning. Using a closed-loop experimental setup, we show in six intracerebrally recorded epileptic patients undergoing presurgical evaluation that intracerebral power spectrum can be increased in the gamma frequency range (30-80 Hz) at different fronto-temporal cortical sites in human subjects. Successful gamma training was accompanied by increased gamma power at other cortical locations and progressively enhanced cross-frequency coupling between gamma and slow oscillations (3-12 Hz). Finally, using microelectrode targets in two subjects, we report that upregulation of gamma activities is possible also in spatial micro-domains, without the spread to macroelectrodes. Overall, our findings indicate that intracerebral gamma modulation can be achieved rapidly, beyond the motor system and with high spatial specificity, when using micro targets. These results are especially significant because they pave the way for use of high-resolution therapeutic approaches for future clinical applications.


Asunto(s)
Electrocorticografía/métodos , Retroalimentación Sensorial/fisiología , Lóbulo Frontal/fisiología , Ritmo Gamma/fisiología , Neurorretroalimentación/métodos , Lóbulo Temporal/fisiología , Adulto , Electrodos Implantados , Epilepsia/fisiopatología , Epilepsia/cirugía , Humanos
3.
Cogn Neurosci ; 6(1): 16-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25496511

RESUMEN

The involvement of the amygdala and orbitofrontal cortex in the processing of valenced stimuli is well established. However, less is known about the extent to which activity in these regions reflects a stimulus' physical properties, the individual subjective experience it evokes, or both. We recorded cortical electrical activity from five epileptic patients implanted with depth electrodes for presurgical evaluation while they rated "consonant" and "dissonant" musical chords using a "pleasantness" scale. We compared the pattern of responses in the amygdala and orbitofrontal cortex when trials were sorted by pleasantness judgments relative to when they were sorted by the acoustic properties known to influence emotional reactions to musical chords. This revealed earlier differential activity in the amygdala in the physical properties-based, relative to in the judgment-based, analyses. Thus, our results demonstrate that the amygdala has, first and foremost, a high initial sensitivity to the physical properties of valenced stimuli. The finding that differentiations in the amygdala based on pleasantness ratings had a longer latency suggests that in this structure, mediation of emotional judgment follows accumulation of sensory information. This is in contrast to the orbitofrontal cortex where sensitivity to sensory information did not precede differentiation based on affective judgments.


Asunto(s)
Amígdala del Cerebelo/fisiología , Emociones/fisiología , Juicio/fisiología , Música , Corteza Prefrontal/fisiología , Estimulación Acústica , Adulto , Percepción Auditiva , Potenciales Evocados Auditivos/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
4.
Cereb Cortex ; 25(11): 4038-47, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24904066

RESUMEN

The processing of valence is known to recruit the amygdala, orbitofrontal cortex, and relevant sensory areas. However, how these regions interact remains unclear. We recorded cortical electrical activity from 7 epileptic patients implanted with depth electrodes for presurgical evaluation while they listened to positively and negatively valenced musical chords. Time-frequency analysis suggested a specific role of the orbitofrontal cortex in the processing of positively valenced stimuli while, most importantly, Granger causality analysis revealed that the amygdala tends to drive both the orbitofrontal cortex and the auditory cortex in theta and alpha frequency bands, during the processing of valenced stimuli. Results from the current study show the amygdala to be a critical hub in the emotion processing network: specifically one that influences not only the higher order areas involved in the evaluation of a stimulus's emotional value but also the sensory cortical areas involved in the processing of its low-level acoustic features.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Corteza Auditiva/fisiopatología , Mapeo Encefálico , Música , Corteza Prefrontal/fisiopatología , Estimulación Acústica , Adulto , Ritmo alfa/fisiología , Percepción Auditiva/fisiología , Electroencefalografía , Epilepsia/patología , Epilepsia/fisiopatología , Femenino , Análisis de Fourier , Humanos , Masculino , Ritmo Teta/fisiología , Factores de Tiempo
5.
Cereb Cortex ; 25(11): 4203-12, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24969472

RESUMEN

Auditory novelty detection has been associated with different cognitive processes. Bekinschtein et al. (2009) developed an experimental paradigm to dissociate these processes, using local and global novelty, which were associated, respectively, with automatic versus strategic perceptual processing. They have mostly been studied using event-related potentials (ERPs), but local spiking activity as indexed by gamma (60-120 Hz) power and interactions between brain regions as indexed by modulations in beta-band (13-25 Hz) power and functional connectivity have not been explored. We thus recorded 9 epileptic patients with intracranial electrodes to compare the precise dynamics of the responses to local and global novelty. Local novelty triggered an early response observed as an intracranial mismatch negativity (MMN) contemporary with a strong power increase in the gamma band and an increase in connectivity in the beta band. Importantly, all these responses were strictly confined to the temporal auditory cortex. In contrast, global novelty gave rise to a late ERP response distributed across brain areas, contemporary with a sustained power decrease in the beta band (13-25 Hz) and an increase in connectivity in the alpha band (8-13 Hz) within the frontal lobe. We discuss these multi-facet signatures in terms of conscious access to perceptual information.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiopatología , Epilepsia/patología , Potenciales Evocados/fisiología , Cara , Estimulación Acústica , Adolescente , Adulto , Percepción Auditiva/fisiología , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Estimulación Luminosa , Factores de Tiempo , Grabación en Video , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA