Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pediatr ; 262: 113563, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37329979

RESUMEN

OBJECTIVE: To determine whether transcutaneous auricular vagus nerve stimulation (taVNS) paired with twice daily bottle feeding increases the volume of oral feeds and white matter neuroplasticity in term-age-equivalent infants failing oral feeds and determined to need a gastrostomy tube. STUDY DESIGN: In this prospective, open-label study, 21 infants received taVNS paired with 2 bottle feeds for 2 - 3 weeks (2x). We compared 1) increase oral feeding volumes with 2x taVNS and previously reported once daily taVNS (1x) to determine a dose response, 2) number of infants who attained full oral feeding volumes, and 3) diffusional kurtosis imaging and magnetic resonance spectroscopy before and after treatment by paired t tests. RESULTS: All 2x taVNS treated infants significantly increased their feeding volumes compared with 10 days before treatment. Over 50% of 2x taVNS infants achieved full oral feeds but in a shorter time than 1x cohort (median 7 days [2x], 12.5 days [1x], P < .05). Infants attaining full oral feeds showed greater increase in radial kurtosis in the right corticospinal tract at the cerebellar peduncle and external capsule. Notably, 75% of infants of diabetic mothers failed full oral feeds, and their glutathione concentrations in the basal ganglia, a measure of central nervous system oxidative stress, were significantly associated with feeding outcome. CONCLUSIONS: In infants with feeding difficulty, increasing the number of daily taVNS-paired feeding sessions to twice-daily significantly accelerates response time but not the overall response rate of treatment. taVNS was associated with white matter motor tract plasticity in infants able to attain full oral feeds. TRIAL REGISTRATION: Clinicaltrials.gov (NCT04643808).


Asunto(s)
Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Sustancia Blanca , Femenino , Humanos , Lactante , Sustancia Blanca/diagnóstico por imagen , Estimulación del Nervio Vago/métodos , Gastrostomía , Estudios Prospectivos , Estimulación Eléctrica Transcutánea del Nervio/métodos , Nervio Vago/fisiología
2.
PLoS One ; 7(10): e47460, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23077622

RESUMEN

BACKGROUND AND OBJECTIVE: Low level light therapy has garnered significant interest within the past decade. The exact molecular mechanisms of how red and near infrared light result in physiologic modulation are not fully understood. Heme moieties and copper within cells are red and near infrared light photoreceptors that induce the mitochondrial respiratory chain component cytochrome C oxidase, resulting in a cascade linked to cytoprotection and cellular metabolism. The copper centers in cytochrome C oxidase have a broad absorption range that peaks around 830 nm. Several in vitro and in vivo animal and human models exist that have demonstrated the benefits of red light and near infrared light for various conditions. Clinical applications for low level light therapy are varied. One study in particular demonstrated improved durable functional outcomes status post-stroke in patients treated with near infrared low level light therapy compared to sham treatment [1]. Despite previous data suggesting the beneficial effect in treating multiple conditions, including stroke, with low level light therapy, limited data exists that measures transmission in a human model. STUDY DESIGN/MATERIALS AND METHODS: To investigate this idea, we measured the transmission of near infrared light energy, using red light for purposes of comparison, through intact cadaver soft tissue, skull bones, and brain using a commercially available LED device at 830 nm and 633 nm. RESULTS: Our results demonstrate that near infrared measurably penetrates soft tissue, bone and brain parenchyma in the formalin preserved cadaveric model, in comparison to negligible red light transmission in the same conditions. CONCLUSION: These findings indicate that near infrared light can penetrate formalin fixed soft tissue, bone and brain and implicate that benefits observed in clinical studies are potentially related to direct action of near infrared light on neural tissue.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Rayos Infrarrojos , Fototerapia , Encéfalo/efectos de la radiación , Cadáver , Cobre/química , Complejo IV de Transporte de Electrones/aislamiento & purificación , Hemo/química , Humanos , Masculino , Cráneo/química , Cráneo/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA