Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 366-373, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37927171

RESUMEN

The bioavailability, small size and direct absorption in the blood, make nanoparticles (NPs) a remarkable feed additive in the aquaculture industry. Therefore, dietary iron oxide nanoparticles (Fe2 O3 -NPs) were used to examine their effects on growth, nutrient absorption, body composition and blood indices in Cyprinus carpio (Common carp) fingerlings. Healthy C. carpio fingerlings (n = 270) were fed with six canola meal based experimental diets (D1-control, D2, D3, D4, D5, D6) supplemented with 0, 10, 20, 30, 40 and 50 mg/kg Fe2 O3 -NPs respectively. A total of 15 fingerlings (average initial weight 5.51 ± 0.04 g/fish) were kept in triplicates for 70 days. The results indicated that maximum growth performance, apparent digestibility coefficient, body composition and haematological parameters were observed in 40 mg/kg Fe2 O3 -NPs supplementation. All the experimental diets were significantly improved (p < 0.05) in all the above parameters than control diet. In the present research, the recommended dosage of Fe2 O3 -NPs as dietary supplement is 40 mg/kg for improving the growth, nutrient absorption, body composition and haematological indices in C. carpio fingerlings. Hence, this study demonstrates the potential of NPs to improve the health of fish.


Asunto(s)
Carpas , Animales , Exposición Dietética , Suplementos Dietéticos/análisis , Dieta/veterinaria , Composición Corporal , Nanopartículas Magnéticas de Óxido de Hierro , Nutrientes , Alimentación Animal/análisis
2.
Environ Pollut ; 311: 119977, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35987285

RESUMEN

Both cadmium (Cd) toxicity and water limited stress in crop plants are serious concerns worldwide while little is known about the impact of various phosphorus (P) sources on Cd accumulation in cereals especially under water limited stress. A study was conducted to explore the efficiency of three frequently available P fertilizers on Cd accumulation in wheat under different soil moisture levels. Three different P sources including diammonium phosphate (DAP), single super phosphate (SSP), and nitrophos (NP) were applied in the soil with three levels (0, 50 and 100 mg/kg). The drought stress was applied to half treatments during the latter growth stages of wheat and plants were harvested at maturity. The results demonstrated that water-limited stress decreased the growth and yield of plants than respective treatments without water stress. P supply increased the growth of wheat irrespective of water-limited stress. The effect on growth and yield varied with the sources and levels of P and maximum effects was observed in DAP treatment (100 mg/kg). The P amendments enhanced the leaf photosynthesis and activities of SOD, POD, CAT and decreased the leaf oxidative burst. Water limited stress enhanced the Cd concentrations in shoots, roots, and grains whereas P amendments minimized the Cd concentrations and enhanced the P concentrations in these parts of plants. The results obtained demonstrated that P supply in the form of DAP might be effective in minimization of Cd in grains and can be used for safe cultivation of metal-contaminated soils.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Fósforo/farmacología , Suelo , Contaminantes del Suelo/análisis , Triticum
3.
Environ Pollut ; 309: 119769, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35850318

RESUMEN

The present experiment was conducted to appraise the role of different seed priming agents in circumventing the negative impact of chromium (Cr) toxicity on canola plants. Chromium toxicity resulted in significant decline in photosynthetic pigments and growth attributes of two canola cultivars (Puriga and MS-007). Cr toxicity also resulted in higher oxidative stress mirrored as greater accumulation of hydrogen peroxide (H2O2) superoxide radical (O2•‒), electrolyte leakage (EL) and malondialdehyde (MDA). Further, lipoxygenase enzyme activity that catalyzes the peroxidation of membrane lipids was also enhanced due to Cr toxicity. Canola plants also manifested impaired methylglyoxal (MG) detoxification due to the downregulation of glyoxalase enzymes (GlyI and II) under Cr stress. Seed priming treatments viz. osmo-priming with calcium chloride (CaCl2) and hormonal priming with salicylic acid (SA) remarkably improved growth and chlorophyll content in both canola cultivars under Cr toxicity as compared to other priming treatments such as hydro-priming, redox priming (H2O2) and chemical priming (Se; selenium). Moreover, CaCl2 and SA seed priming also resulted in lower oxidative stress and improved enzymatic (SOD, POD, CAT, APX, GR, GST) and non-enzymatic (GSH, phenolics, flavonoids, proline) antioxidant system of both cultivars under Cr toxicity. Further, hormonal and osmo-priming strengthened glyoxalase and antioxidant systems, thus improving reactive oxygen species (ROS) and MG detoxification. In this background, the cultivar Puriga is considered Cr tolerant as it exhibited better growth and lesser oxidative stress in both seed priming and non-primed conditions under Cr toxicity than cv. MS-007.


Asunto(s)
Brassica napus , Selenio , Antioxidantes/metabolismo , Cloruro de Calcio , Cromo , Peróxido de Hidrógeno/farmacología , Oxidación-Reducción , Estrés Oxidativo , Semillas/metabolismo , Selenio/farmacología
4.
Environ Pollut ; 304: 119249, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390420

RESUMEN

Both cancer and diabetes mellitus are serious health issues, accounting more than 11 million deaths worldwide annually. Targeted use of plant-mediated nanoparticles (NPs) in treatment of ailments has outstanding results due to their salient properties. The current study was designed to investigate the safe production of silver nanoparticles (AgNPs) from Acacia nilotica. Different concentrations of AgNO3 were tested to optimize the protocol for the synthesis of AgNPs from the bark extract. It was demonstrated that 0.1 M and 3 mM were found to be the optimum concentrations for the synthesis of AgNPs. Standard characterization techniques such as UV-vis spectrophotometry, SEM, SEM-EDX micrograph, spot analysis, elemental mapping and XRD were used for the conformation of biosynthesis of AgNPs. Absorption spectrum of plant-mediated AgNPs under UV-vis spectrophotometer showed a strong peak at 380 nm and 420 nm for AgNPs synthesized at 0.1 M and 3 mM concentration of salt. The SEM results showed that AgNPs were present in variable shapes within average particle size ranging from (20-50 nm). Anticancer, antidiabetic and antioxidant potential of green AgNPs was investigated and they showed promising results as compared to the positive and negative controls. Hence, AgNPs were found potent therapeutic agent against the human liver cancer cell lines (HepG2), strong inhibitor for α-glucosidase enzyme activity and scavenging agent against free radicals that cause oxidative stress. Further studies are however needed to confirm the molecular mechanism and biochemical reactions responsible for the anticancer and antidiabetic activities of the particles.


Asunto(s)
Acacia , Nanopartículas del Metal , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plata/química
5.
Ecotoxicol Environ Saf ; 212: 111978, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33561774

RESUMEN

Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. Among nanoparticles (NPs), titanium dioxide (TiO2) NPs have been widely used in daily life and can be synthesized through various physical, chemical, and green methods. Green synthesis is a non-toxic, cost-effective, and eco-friendly route for the synthesis of NPs. Plenty of work has been reported on the green, chemical, physical and biological synthesis of TiO2 NPs and these NPs can be characterized through high tech. instruments. In the present review, dense data have been presented on the comparative synthesis of TiO2 NPs with different characteristics and their wide range of applications. Among the TiO2 NPs synthesis techniques, the green methods have been proven to be efficient than chemical synthesis methods because of the less use of precursors, time-effectiveness, and energy-efficiency during the green synthesis procedures. Moreover, this review describes the types of plants (shrubs, herbs and trees), microorganisms (bacteria, fungi and algae), biological derivatives (proteins, peptides, and starches) employed for the synthesis of TiO2 NPs. The TiO2 NPs can be effectively used for the treatment of polluted water and positively affected the plant physiology especially under abiotic stresses but the response varied with types, size, shapes, doses, duration of exposure, metal species along with other factors. This review also highlights the regulating features and future standpoints for the measurable enrichment in TiO2 NPs product and perspectives of TiO2 NPs reliable application.


Asunto(s)
Nanopartículas , Titanio , Nanopartículas del Metal/química , Extractos Vegetales , Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA