Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 24(1): 389, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37828428

RESUMEN

BACKGROUND: Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community. RESULTS: This work introduces [Formula: see text]-ep, a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. [Formula: see text]-ep employs the monodomain equation to model the heart's electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, [Formula: see text]-ep integrates the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within [Formula: see text]-fiber. As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying [Formula: see text]-ep, along with comprehensive implementation details and instructions for users. [Formula: see text]-ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of [Formula: see text]-ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files. CONCLUSIONS: [Formula: see text]-ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. [Formula: see text]-ep represents a valuable tool for conducting in silico patient-specific simulations.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Programas Informáticos , Humanos , Simulación por Computador , Miocardio , África
2.
Int J Numer Method Biomed Eng ; 39(3): e3678, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36579792

RESUMEN

We propose a mathematical and numerical model for the simulation of the heart function that couples cardiac electrophysiology, active and passive mechanics and hemodynamics, and includes reduced models for cardiac valves and the circulatory system. Our model accounts for the major feedback effects among the different processes that characterize the heart function, including electro-mechanical and mechano-electrical feedback as well as force-strain and force-velocity relationships. Moreover, it provides a three-dimensional representation of both the cardiac muscle and the hemodynamics, coupled in a fluid-structure interaction (FSI) model. By leveraging the multiphysics nature of the problem, we discretize it in time with a segregated electrophysiology-force generation-FSI approach, allowing for efficiency and flexibility in the numerical solution. We employ a monolithic approach for the numerical discretization of the FSI problem. We use finite elements for the spatial discretization of partial differential equations. We carry out a numerical simulation on a realistic human left heart model, obtaining results that are qualitatively and quantitatively in agreement with physiological ranges and medical images.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Hidrodinámica , Humanos , Modelos Cardiovasculares , Corazón/fisiología , Válvulas Cardíacas/fisiología , Simulación por Computador , Miocardio
3.
Comput Biol Med ; 127: 104047, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33099220

RESUMEN

In this work we address the issue of validating the monodomain equation used in combination with the Bueno-Orovio ionic model for the prediction of the activation times in cardiac electro-physiology of the left ventricle. To this aim, we consider four patients who suffered from Left Bundle Branch Block (LBBB). We use activation maps performed at the septum as input data for the model and maps at the epicardial veins for the validation. In particular, a first set (half) of the latter are used to estimate the conductivities of the patient and a second set (the remaining half) to compute the errors of the numerical simulations. We find an excellent agreement between measures and numerical results. Our validated computational tool could be used to accurately predict activation times at the epicardial veins with a short mapping, i.e. by using only a part (the most proximal) of the standard acquisition points, thus reducing the invasive procedure and exposure to radiation.


Asunto(s)
Terapia de Resincronización Cardíaca , Técnicas Electrofisiológicas Cardíacas , Arritmias Cardíacas , Bloqueo de Rama , Electrocardiografía , Ventrículos Cardíacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA