Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Pharmacology ; 108(6): 504-520, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37748454

RESUMEN

BACKGROUND: The development of breast cancer (BC) and how it responds to treatment have both been linked to the involvement of inflammation. Chronic inflammation is critical in carcinogenesis, leading to elevated DNA damage, impaired DNA repair machinery, cell growth, apoptosis, angiogenesis, and invasion. Studies have found several targets that selectively modulate inflammation in cancer, limit BC's growth, and boost treatment effectiveness. Drug resistance and the absence of efficient therapeutics for metastatic and triple-negative BC contribute to the poor outlook of BC patients. SUMMARY: To treat BC, small-molecule inhibitors, phytomedicines, and nanoparticles are conjugated to attenuate BC signaling pathways. Due to their numerous target mechanisms and strong safety records, phytomedicines and nanomedicines have received much attention in studies examining their prospects as anti-BC agents by such unfulfilled demands. KEY MESSAGES: The processes involved in the affiliation across the progression of tumors and the spread of inflammation are highlighted in this review. Furthermore, we included many drugs now undergoing clinical trials that target cancer-mediated inflammatory pathways, cutting-edge nanotechnology-derived delivery systems, and a variety of phytomedicines that presently address BC.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Nanomedicina , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transducción de Señal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Inflamación/tratamiento farmacológico
2.
Crit Rev Food Sci Nutr ; : 1-24, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37255100

RESUMEN

Enzymes are biologically active complex protein molecules that catalyze most chemical reactions in living organisms, and their inhibitors accelerate biological processes. This review emphasizes medicinal food plants and their isolated chemicals inhibiting clinically important enzymes in common diseases. A mechanistic overview was investigated to explain the mechanism of these food bases enzyme inhibitors. The enzyme inhibition potential of medicinal food plants and their isolated substances was searched in Ovid, PubMed, Science Direct, Scopus, and Google Scholar. Cholinesterase, amylase, glucosidase, xanthine oxidase, tyrosinase, urease, lipoxygenase, and others were inhibited by crude extracts, solvent fractions, or isolated pure chemicals from medicinal food plants. Several natural compounds have shown tyrosinase inhibition potential, including quercetin, glabridin, phloretin-4-O-ß-D-glucopyranoside, lupinalbin, and others. Some of these compounds' inhibitory kinetics and molecular mechanisms are also discussed. Phenolics and flavonoids inhibit enzyme activity best among the secondary metabolites investigated. Several studies showed flavonoids' significant antioxidant and anti-inflammatory activities, highlighting their medicinal potential. Overall, many medicinal food plants, their crude extracts/fractions, and isolated compounds have been studied, and some promising compounds depending on the enzyme have been found. Still, more studies are recommended to derive potential pharmacologically active functional foods.

3.
Nat Prod Res ; 37(6): 1023-1029, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35815778

RESUMEN

In the present research, oleuropein (OLE) contents from two Saudi Arabian wild olive trees (Olea europaea L.) leaves (O1 and O2), were collected from two nearby geographical sites differing in altitudes, and were determined via UHPLC-MS analysis. Moreover, total bioactive contents, antioxidant, and cytotoxicity (against MCF-7 and MDA-MB-231 cells) potential were also evaluated. The sample (O2) was found to contain significantly (p < 0.05) higher OLE content (4.13 ± 1.0 mg/g DW) compared with the sample (O1) having OLE content (3.63 ± 1.1 mg/g DW). A similar trend was observed regarding total bioactive contents and antioxidant potential. However, both samples exhibited low cytotoxicity against tested cell lines. Furthermore, with hierarchical cluster analysis that compared the results of our samples (O1 and O2) to other samples reported in the literature, it was found that the variance in OLE content and biological activities from Al Baha region leaves had a resemblance to other reported superior cultivars.


Asunto(s)
Antineoplásicos , Olea , Antioxidantes/química , Olea/química , Iridoides/química , Arabia Saudita , Glucósidos Iridoides , Antineoplásicos/química , Extractos Vegetales/química , Hojas de la Planta/química , Fitoquímicos/farmacología , Fitoquímicos/análisis
4.
Front Plant Sci ; 13: 988352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212347

RESUMEN

This study was designed to seek the phytochemical analysis, antioxidant, enzyme inhibition, and toxicity potentials of methanol and dichloromethane (DCM) extracts of aerial and root parts of Crotalaria burhia. Total bioactive content, high-performance liquid chromatography-photodiode array detector (HPLC-PDA) polyphenolic quantification, and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analysis were utilized to evaluate the phytochemical composition. Antioxidant [including 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)], 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP), cupric reducing antioxidant capacity CUPRAC, phosphomolybdenum, and metal chelation assays] and enzyme inhibition [against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glucosidase, α-amylase, and tyrosinase] assays were carried out for biological evaluation. The cytotoxicity was tested against MCF-7 and MDA-MB-231 breast cell lines. The root-methanol extract contained the highest levels of phenolics (37.69 mg gallic acid equivalent/g extract) and flavonoids (83.0 mg quercetin equivalent/g extract) contents, and was also the most active for DPPH (50.04 mg Trolox equivalent/g extract) and CUPRAC (139.96 mg Trolox equivalent /g extract) antioxidant assays. Likewise, the aerial-methanol extract exhibited maximum activity for ABTS (94.05 mg Trolox equivalent/g extract) and FRAP (64.23 mg Trolox equivalent/g extract) assays. The aerial-DCM extract was noted to be a convincing cholinesterase (AChE; 4.01 and BChE; 4.28 mg galantamine equivalent/g extract), and α-glucosidase inhibitor (1.92 mmol acarbose equivalent/g extract). All of the extracts exhibited weak to modest toxicity against the tested cell lines. A considerable quantities of gallic acid, catechin, 4-OH benzoic acid, syringic acid, vanillic acid, 3-OH-4-MeO benzaldehyde, epicatechin, p-coumaric acid, rutin, naringenin, and carvacrol were quantified via HPLC-PDA analysis. UHPLC-MS analysis of methanolic extracts from roots and aerial parts revealed the tentative identification of important phytoconstituents such as polyphenols, saponins, flavonoids, and glycoside derivatives. To conclude, this plant could be considered a promising source of origin for bioactive compounds with several therapeutic uses.

5.
Nat Prod Res ; 36(14): 3750-3755, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33550873

RESUMEN

Anagallis arvensis L. commonly known as 'Scarlet Pimpernel' has been used in folklore as natural remedy for treating common ailments. The present research is aimed to explore the phytochemical composition and enzyme inhibition potential of methanol and dichloromethane (DCM) extracts of A. arvensis aerial and root parts. The phytochemical composition was established via HPLC-PDA polyphenolic quantification and UHPLC-MS analysis, while the inhibition potential against amylase and tyrosinase enzymes were assessed using standard in vitro protocols. The HPLC-PDA polyphenolic quantification revealed the presence of important compounds including catechin, gallic acid, chlorogenic acid, and ferulic acid, whereas 34 different secondary metabolites were tentatively identified by UHPLC-MS of both the DCM extracts. All the extracts showed moderate tyrosinase and a weak amylase inhibition activity. The aerial-DCM extract showed comparatively higher tyrosinase and amylase enzyme inhibition potential, which may be due to the presence of secondary metabolites as tentatively identified by its UHPLC-MS profiling.


Asunto(s)
Anagallis , Monofenol Monooxigenasa , Amilasas , Anagallis/química , Antioxidantes/farmacología , Inhibidores Enzimáticos/química , Fitoquímicos/análisis , Fitoquímicos/farmacología , Componentes Aéreos de las Plantas/química , Extractos Vegetales/química
6.
Food Chem Toxicol ; 155: 112404, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34246708

RESUMEN

Capparis spinose L. also known as Caper is of great significance as a traditional medicinal food plant. The present work was targeted on the determination of chemical composition, pharmacological properties, and in-vitro toxicity of methanol and dichloromethane (DCM) extracts of different parts of C. spinosa. Chemical composition was established by determining total bioactive contents and via UHPLC-MS secondary metabolites profiling. For determination of biological activities, antioxidant capacity was determined through DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelating assays while enzyme inhibition against cholinesterase, tyrosinase, α-amylase and α-glucosidase were also tested. All the extracts were also tested for toxicity against two breast cell lines. The methanolic extracts were found to contain highest total phenolic and flavonoids which is correlated with their significant radical scavenging, cholinesterase, tyrosinase and glucosidase inhibition potential. Whereas DCM extracts showed significant activity for reducing power, phosphomolybdenum, metal chelation, tyrosinase, and α-amylase inhibition activities. The secondary metabolites profiling of both methanolic extracts exposed the presence of 21 different secondary metabolites belonging to glucosinolate, alkaloid, flavonoid, phenol, triterpene, and alkaloid derivatives. The present results tend to validate folklore uses of C. spinose and indicate this plant to be used as a potent source of designing novel bioactive compounds.


Asunto(s)
Capparis/química , Inhibidores Enzimáticos/farmacología , Depuradores de Radicales Libres/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Plantas Medicinales/química , Capparis/toxicidad , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/toxicidad , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/toxicidad , Humanos , Fitoquímicos/química , Fitoquímicos/toxicidad , Componentes Aéreos de las Plantas/química , Componentes Aéreos de las Plantas/toxicidad , Extractos Vegetales/química , Extractos Vegetales/toxicidad , Raíces de Plantas/química , Raíces de Plantas/toxicidad , Plantas Medicinales/toxicidad
7.
Food Chem Toxicol ; 154: 112348, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34144099

RESUMEN

Suaeda fruticosa is an edible medicinal halophyte known for its traditional uses. In this study, methanol and dichloromethane extracts of S. fruticosa were explored for phytochemical, biological and toxicological parameters. Total phenolic and flavonoid constituents were determined by using standard aluminum chloride and Folin-Ciocalteu methods, and UHPLC-MS analysis of methanol extract was performed for tentative identification of secondary metabolites. Different standard methods like DPPH, ABTS, FRAP, CUPRAC, total antioxidant capacity (TAC), and metal chelation assays were utilized to find out the antioxidant potential of extracts. Enzyme inhibition studies of extracts against acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase and, α-glucosidase enzymes were also studied. Likewise, the cytotoxicity was also assessed against MCF-7, MDA-MB-231, and DU-145 cell lines. The higher phenolic and flavonoids contents were observed in methanol extracts which can be correlated to its higher radical scavenging potential. Similarly, 11 different secondary metabolites were tentatively identified by UHPLC profiling. Both the extract showed significant inhibition against all the enzymes except for α-glucosidase. Moreover, docking studies were also performed against the tested enzymes. In the case of cytotoxicity, both the samples were found moderately toxic against the tested cell lines. This plant can be explored further for its potential therapeutic and edible uses.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Chenopodiaceae/química , Inhibidores Enzimáticos/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Enzimas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Fitoquímicos/química , Fitoquímicos/metabolismo , Extractos Vegetales/química , Plantas Medicinales/química , Unión Proteica
8.
Biomolecules ; 11(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406643

RESUMEN

Heliotropium is one of the most important plant genera to have conventional folklore importance, and hence is a potential source of bioactive compounds. Thus, the present study was designed to explore the therapeutic potential of Heliotropium crispum Desf., a relatively under-explored medicinal plant species. Methanolic extracts prepared from a whole plant of H. crispum were studied for phytochemical composition and possible in vitro and in silico biological properties. Antioxidant potential was assessed via six different assays, and enzyme inhibition potential against key clinical enzymes involved in neurodegenerative diseases (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)), diabetes (α-amylase and α-glucosidase), and skin problems (tyrosinase) was assayed. Phytochemical composition was established via determination of the total bioactive contents and reverse phase ultra-high performance liquid chromatography mass spectrometry (RP-UHPLC-MS) analysis. Chemical profiling revealed the tentative presence of 50 secondary metabolites. The plant extract exhibited significant inhibition against AChE and BChE enzymes, with values of 3.80 and 3.44 mg GALAE/g extract, respectively. Further, the extract displayed considerable free radical scavenging activity against DPPH and ABTS radicals, with potential values of 43.19 and 41.80 mg TE/g extract, respectively. In addition, the selected compounds were then docked against the tested enzymes, which have shown high inhibition affinity. To conclude, H. crispum was found to harbor bioactive compounds and showed potent biological activities which could be further explored for potential uses in nutraceutical and pharmaceutical industries, particularly as a neuroprotective agent.


Asunto(s)
Cromatografía de Fase Inversa , Heliotropium/química , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Fitoquímicos/química , Fitoquímicos/uso terapéutico , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos/farmacología , Metabolismo Secundario/efectos de los fármacos , Termodinámica
9.
Nat Prod Res ; 35(4): 664-668, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30919661

RESUMEN

This study sets out to probe into total bioactive contents, UHPLC-MS secondary metabolites profiling, antioxidant (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating) and enzyme inhibitory (acetylcholinesterase- AChE, butyrylcholinesterase- BChE, α-amylase, α glucosidase, and tyrosinase) activities of methanol extract of Aerva javanica, also known as desert cotton or Kapok bush. Aerva javanica contains considerable phenolic (44.79 ± 3.12 mg GAE/g) and flavonoid (28.86 ± 0.12 mg QE/g) contents which tends to correlate with its significant antioxidant potential for ABTS, FRAP and CUPRAC assays with values of 101.41 ± 1.18, 124.10 ± 1.71 and 190.22 ± 5.70 mg TE/g, respectively. The UHPLC-MS analysis identified the presence of 45 phytochemicals belonging to six major groups: phenolic, flavonoids, lignin, terpenes, glycoside and alkaloid. Moreover, the plant extract also showed potent inhibitory action against AChE (3.73 ± 0.22 mg GALAE/g), BChE (3.31 ± 0.19 mg GALAE/g) and tyrosinase (126.05 ± 1.77 mg KAE/g). The observed results suggest A. javanica could be further explored as a natural source of bioactive compounds.


Asunto(s)
Amaranthaceae/química , Antioxidantes/farmacología , Inhibidores Enzimáticos/farmacología , Fitoquímicos/análisis , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Flavonoides/análisis , Inhibidores de Glicósido Hidrolasas/farmacología , Metanol/química , Monofenol Monooxigenasa/antagonistas & inhibidores , Fenoles/análisis , Fitoquímicos/farmacología , Extractos Vegetales/química , Metabolismo Secundario , alfa-Amilasas/antagonistas & inhibidores , alfa-Glucosidasas/metabolismo
10.
J Ethnopharmacol ; 266: 113356, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32956758

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bougainvillea glabra (Choisy). (Family: Nyctinaginacea) is a valuable ornamental plant with culinary uses and also utilized in traditional medicine for treating common ailments. It is traditionally employed against several diseases such as diarrhoea, hypotension, intestinal disorders, stomachache, nausea, inflammation-related ailments, and in pain management. Though widely validated via in vitro and in vivo models, to date no endeavour has been made to compile in a single review the traditional, phytochemistry and pharmacological properties of B. glabra. AIMS: To provide an up-to-date, authoritative review with respect to the traditional uses, chemical composition, in vitro and in vivo pharmacological properties, and toxicological estimations accomplished either utilizing the crude extracts or, wherever applicable, the bioactive compounds isolated from B. glabra. Besides, a critical evaluation of the published literature has been undertaken with regards to the current biochemical and toxicological data. MATERIALS AND METHODS: Key databases per se, Ovid, Pubmed, Science Direct, Scopus, and Google scholar amongst others were probed for a systematic search using keywords to retrieve relevant publications on this plant. A total of 52 articles were included for the review depending on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: The studies conducted on either crude extracts, solvent fractions or isolated pure compounds from B. glabra had reported a varied range of biological effects comprising antibacterial, antifungal, antidiabetic, cytotoxic, analgesic, antipyretic, anti-inflammatory, and antioxidant activities. Phytochemical analysis of different parts of B. glabra unveiled 105 phytochemicals, belonging to phenolic, flavonoid, betacyanin, terpenoid, glycoside and essential oils classes of secondary metabolites. CONCLUSION: Most of the pharmacological activities of crude extracts from this plant have been reported. A very few studies have reported the isolation of compounds responsible for observed biological potential of this plant. Moreover, the toxicity studies of this plant still need to be explored comprehensively to ensure its safety parameters. Additional investigations are recommended to transmute the ethnopharmacological claims of this plant species in folklore medicines into scientific rationale-based information.


Asunto(s)
Medicina Tradicional , Nyctaginaceae/química , Extractos Vegetales/farmacología , Animales , Etnofarmacología , Humanos , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoterapia , Extractos Vegetales/efectos adversos , Extractos Vegetales/química
11.
Food Res Int ; 137: 109606, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33233202

RESUMEN

Calligonum polygonoides L. also known as famine food plant, is normally consumed in times of food scarcity in India and Pakistan and also used traditionally in the management of common diseases. The present design aims to provide an insight into the medicinal potential of four solvent extracts of C. polygonoides via an assessment of its phytochemical profile, antioxidant and enzyme inhibitory potential. Phytochemical composition was estimated by deducing total bioactive constituents, UHPLC-MS secondary metabolites profile, and HPLC phenolic quantification. Antioxidant potential was determined via six methods (radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum total antioxidant capacity and metal chelation activity). Enzyme inhibitory potential was assessed against clinical enzymes (acetylcholinesterase -AChE, butyrylcholinesterase -BChE, tyrosinase, and α-amylase). The highest amounts of phenolic contents were found in chloroform extract (76.59 mg GAE/g extract) which may be attributed to its higher radical scavenging, reducing power and tyrosinase inhibition potential. The n-butanol extract containing the maximum amount of flavonoids (55.84 mg RE/g extract) exhibited highest metal chelating capacity. Similarly, the n-hexane extract was found to be most active against AChE (4.65 mg GALAE/g extract), BChE (6.59 mg GALAE/g extract), and α-amylase (0.70 mmol ACAE/g extract) enzymes. Secondary metabolite assessment of the crude methanol extract as determined by UHPLC-MS analysis revealed the presence of 24 (negative ionization mode) and 15 (positive ionization mode) secondary metabolites, with most of them belonging to phenolic, flavonoids, terpene, and alkaloid groups. Moreover, gallic acid and naringenin were the main phenolics quantified by HPLC-PDA analysis in all the tested extracts (except n-butanol extract). PCA statistical analysis was also conducted to establish any possible relationship amongst bioactive contents and biological activities. Overall, the C. polygonoides extracts could be further considered to isolate bioactive enzyme inhibitory and antioxidant natural phytocompounds.


Asunto(s)
Hambruna , Extractos Vegetales , India , Análisis Multivariante , Pakistán , Fitoquímicos/análisis , Plantas Comestibles
12.
Food Res Int ; 137: 109651, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33233230

RESUMEN

Anagallis arvensis (L.) is a wild edible food plant that has been used in folklore as a natural remedy for treating common ailments. This study aimed to explore the biochemical properties and toxicity of methanol (MeOH) and dichloromethane (DCM) extracts of A. arvensis (aerial and root parts). Bioactive contents were assessed spectrophotometrically, and the secondary metabolites were identified by UHPLC-MS analysis. DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelating assays were employed to assess antioxidant activity. Inhibitory potential against key enzymes (α-glucosidase, urease, lipoxygenase (LOX), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE)) were also assessed. MTT assay was employed to test toxicity against SW-480, MDA-MB-231, CaSki, MCF-7, and DU-145 cancer cell lines. Methanolic extracts showed highest phenolic (aerial-MeOH: 27.5 mg GAE/g extract; root-MeOH: 21.17 mg GAE/g extract) and flavonoid (aerial-MeOH: 26.15 mg QE/g extract; root-MeOH: 19.07 mg QE/g extract) contents, and potent antioxidant activities. The aerial-MeOH extract was most potent for DPPH (IC50: 231 ug/mL), ABTS (131.12 mg TE/g extract), FRAP (82.97 mg TE/g extract), and CUPRAC (137.15 mg TE/g extract) antioxidant assays. All extracts were cytotoxic towards tested cancer cells with IC50 values ranging from 12.57 to 294.5 µg/mL and conferred a comparatively strong inhibition against α-glucosidase (aerial-DCM extract showed the highest inhibition against α-glucosidase with IC50 value of 20.97 µg /mL), while aerial extracts were also considerably active against BChE (aerial-MeOH IC50: 224.63 µg /mL), LOX (aerial-DCM IC50: 385.7 µg /mL). Likewise, aerial-MeOH extract was most active against urease enzyme (IC50: 129.72 µg /mL). UHPLC-MS investigation of methanolic extracts showed the existence of important phenolics, flavonoids, and saponins, including methyl gallte, quercetin, lanceoletin, and balanitesin, amongst others. Moreover, principal component analysis (PCA) highlighted the correlation amongst bioactive contents and observed biological activities. A. arvensis extracts could be regarded as a natural source of bioactive antioxidants, enzyme inhibitors and anticancer agents and can be further investigated as a lead source for food and pharmaceutical products. However, further studies to isolate, purify, and to characterize its bioactive phytochemicals are needed.


Asunto(s)
Anagallis , Extractos Vegetales , Antioxidantes/toxicidad , Fitoquímicos/toxicidad , Extractos Vegetales/toxicidad , Plantas Comestibles
13.
BMC Complement Med Ther ; 20(1): 313, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33066787

RESUMEN

BACKGROUND: Ethnobotanical and plant-based products allow for the isolation of active constituents against a number of maladies. Monotheca buxifolia is used by local communities due to its digestive and laxative properties, as well as its ability to cure liver, kidney, and urinary diseases. There is a need to explore the biological activities and chemical constituents of this medicinal plant. METHODS: In this work, the biochemical potential of M. buxifolia (Falc.) A. DC was explored and linked with its biological activities. Methanol and chloroform extracts from leaves and stems were investigated for total phenolic and flavonoid contents. Ultrahigh-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was used to determine secondary-metabolite composition, while high-performance liquid chromatography coupled with photodiode array detection (HPLC-PDA) was used for polyphenolic quantification. In addition, we carried out in vitro assays to determine antioxidant potential and the enzyme-inhibitory response of M. buxifolia extracts. RESULTS: Phenolics (91 mg gallic-acid equivalent (GAE)/g) and flavonoids (48.86 mg quercetin equivalent (QE)/g) exhibited their highest concentration in the methanol extract of stems and the chloroform extract of leaves, respectively. UHPLC-MS analysis identified a number of important phytochemicals, belonging to the flavonoid, phenolic, alkaloid, and terpenoid classes of secondary metabolites. The methanol extract of leaves contained a diosgenin derivative and polygalacin D, while kaempferol and robinin were most abundant in the chloroform extract. The methanol extract of stems contained a greater peak area for diosgenin and kaempferol, whereas this was true for lucidumol A and 3-O-cis-coumaroyl maslinic acid in the chloroform extract. Rutin, epicatechin, and catechin were the main phenolics identified by HPLC-PDA analysis. The methanol extract of stems exhibited significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activities (145.18 and 279.04 mmol Trolox equivalent (TE)/g, respectively). The maximum cupric reducing antioxidant capacity (CUPRAC) (361.4 mg TE/g), ferric-reducing antioxidant power (FRAP) (247.19 mg TE/g), and total antioxidant potential (2.75 mmol TE/g) were depicted by the methanol extract of stems. The methanol extract of leaves exhibited stronger inhibition against acetylcholinesterase (AChE) and glucosidase, while the chloroform extract of stems was most active against butyrylcholinesterase (BChE) (4.27 mg galantamine equivalent (GALAE)/g). Similarly, the highest tyrosinase (140 mg kojic-acid equivalent (KAE)/g) and amylase (0.67 mmol acarbose equivalent (ACAE)/g) inhibition was observed for the methanol extract of stems. CONCLUSIONS: UHPLC-MS analysis and HPLC-PDA quantification identified a number of bioactive secondary metabolites of M. buxifolia, which may be responsible for its antioxidant potential and enzyme-inhibitory response. M. buxifolia can be further explored for the isolation of its active components to be used as a drug.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Pakistán , Hojas de la Planta , Tallos de la Planta
14.
Drug Dev Ind Pharm ; 46(5): 861-868, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32352878

RESUMEN

The biological, chemical, and in silico properties of methanol and dichloromethane (DCM) extracts of Alhagi maurorum roots with respect to the antioxidant, enzyme inhibition, and phytochemical composition were evaluated. Total bioactive contents were determined spectrophotometrically, and the individual secondary metabolites composition was assessed via ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) analysis. Antioxidant capacities were evaluated using a panoply of assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging, ferric reducing antioxidant power (FRAP), cupric reducing antioxidant power (CUPRAC), phosphomolybdenum total antioxidant capacity (TAC), and metal chelating activity (MCA)). The enzyme inhibition potential was studied against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, α-glucosidase, tyrosinase, urease and lipoxygenase (LOX) enzymes. The methanol extract was found to contain higher total phenolic (105.91 mg GAE/g extract) and flavonoid (2.27 mg RE/g extract) contents which can be correlated to its more substantial antioxidant potential as well as AChE, BChE, tyrosinase and α-glucosidase inhibition. However, the DCM extract was the most effective against α-amylase (1.86 mmol ACAE/g extract) enzyme inhibition. The UHPLC-MS analysis of methanol extract identified the tentative presence of a total of 18 secondary metabolites, including flavonoids, saponins, phenolic and terpenoid derivatives. Three compounds named emmotin A, luteolin 5,3'-dimethyl ether, and preferrugone were further investigated for their in silico molecular docking studies against the tested enzymes. The selected compounds were found to have higher binding interaction with AChE followed by BChE, α-glucosidase, α-amylase, and tyrosinase. The results of the present study have demonstrated A. mauroram to be considered as a lead source of natural antioxidant and enzyme inhibitor compounds.


Asunto(s)
Simulación por Computador , Simulación del Acoplamiento Molecular/métodos , Fitoquímicos/análisis , Extractos Vegetales/análisis , Raíces de Plantas , Plantas Medicinales , Cromatografía Líquida de Alta Presión/métodos , Fitoquímicos/química , Extractos Vegetales/química , Espectrometría de Masas en Tándem/métodos
15.
Food Res Int ; 133: 109129, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32466933

RESUMEN

The Crocus and Cyclamen genus have been reported to possess diverse biological properties. In the present investigation, two geophytes from these genus, namely Crocus pallasi and Cyclamen cilicium have been studied. The in vitro antioxidant, enzyme inhibitory, and cytotoxic effects of the methanol extracts of Crocus pallasii and Cyclamen cilicium aerial and underground parts were investigated. Antioxidant abilities of the extracts were investigated via different antioxidant assays (metal chelating, radical quenching (ABTS and DPPH), reducing power (CUPRAC and FRAP) and phosphomolybdenum). Cholinesterases, amylase, tyrosinase, and glucosidase were used as target enzymes for detecting enzyme inhibitory abilities of the samples. Regarding the cytotoxic abilities, breast cancer cell lines (MDA-MB 231 and MCF-7) and prostate cancer cell lines (DU-145) were used. The flowers extracts of Crocus pallasii and C. cilicium possessed the highest flavonoid content. The highest phenolic content was recorded from C. cilicium root extract (47.62 mg gallic acid equivalent/g extract). Cyclamen cilicium root extract showed significantly (p < 0.05) high radical scavenging (94.28 and 139.60 mg trolox equivalent [TE]/g extract, against DPPH and ABTS radicals, respectively) and reducing potential (173.30 and 109.53 mg TE/g extract, against CUPRAC and FRAP, respectively). The best acetylcholinesterase, glucosidase and tyrosinase inhibition was observed in C. cilicium root (4.46 mg GALAE/g; 15.75 mmol ACAE/g; 136.99 mg KAE/g, respectively). Methanolic extracts of C. pallasii and C. cilicium showed toxicity against breast cancer cell lines. In light of the above findings, C. cilicium might be considered as an interesting candidate in the development of anti-cancer agent coupled with antioxidant properties.


Asunto(s)
Antioxidantes/análisis , Crocus/química , Cyclamen/química , Inhibidores Enzimáticos/análisis , Extractos Vegetales/análisis , Flavonoides/análisis , Flores/química , Metanol/análisis , Fenoles/análisis
16.
Curr Top Med Chem ; 20(12): 1093-1104, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32091334

RESUMEN

Natural Products (NP), specifically from medicinal plants or herbs, have been extensively utilized to analyze the fundamental mechanisms of ultimate natural sciences as well as therapeutics. Isolation of secondary metabolites from these sources and their respective biological properties, along with their lower toxicities and cost-effectiveness, make them a significant research focus for drug discovery. In recent times, there has been a considerable focus on isolating new chemical entities from natural flora to meet the immense demand for kinase modulators, and also to overcome major unmet medical challenges in relation to signal transduction pathways. The signal transduction systems are amongst the foremost pathways involved in the maintenance of life and protein kinases play an imperative part in these signaling pathways. It is important to find a kinase inhibitor, as it can be used not only to study cell biology but can also be used as a drug candidate for cancer and metabolic disorders. A number of plant extracts and their isolated secondary metabolites such as flavonoids, phenolics, terpenoids, and alkaloids have exhibited activities against various kinases. In the current review, we have presented a brief overview of some important classes of plant secondary metabolites as kinase modulators. Moreover, a number of phytocompounds with kinase inhibition potential, isolated from different plant species, are also discussed.


Asunto(s)
Productos Biológicos/farmacología , Extractos Vegetales/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Animales , Productos Biológicos/química , Productos Biológicos/metabolismo , Humanos , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Plantas Medicinales/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Nat Prod Res ; 34(18): 2602-2606, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30600720

RESUMEN

In this study, phytochemical composition, antioxidant, enzyme inhibition and cytotoxic activities of methanol and dichloromethane (DCM) extracts of Bougainvillea glabra (B. glabra) flowers were investigated. Methanol extract was found to have higher total bioactive contents and UHPLC-MS analysis of methanol extract revealed the presence of well-known phenolic and flavonoid compounds. Antioxidant activities were performed by radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum (TAC) and metal chelating assays. From our result, we observed that methanol extract had many antioxidant compounds. The DCM extract exhibited higher cholinesterases and α-glucosidase enzyme inhibition, while methanol extract showed significant urease inhibition. Both extracts exhibited strong to moderate cytotoxicity against MCF-7, MDA-MB-231, CaSki, DU-145 and SW-480 cancer cells with IC50 values ranging from 88.49 to 304.7 µg/mL. The findings showed the B. glabra to possess considerable antioxidant, enzyme inhibition and cytotoxic potentials and therefore has potential to discover novel bioactive molecules.


Asunto(s)
Antioxidantes/aislamiento & purificación , Citotoxinas/aislamiento & purificación , Inhibidores Enzimáticos/aislamiento & purificación , Flores/química , Nyctaginaceae/química , Fitoquímicos/análisis , Antioxidantes/farmacología , Línea Celular Tumoral , Citotoxinas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacología , Flavonoides/análisis , Flavonoides/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Fenoles/análisis , Fenoles/aislamiento & purificación , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Ureasa/antagonistas & inhibidores
18.
Nat Prod Res ; 34(23): 3373-3377, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30678488

RESUMEN

In this study, different parts (aerial, stem and root) of Salvadora oleoides Decne were investigated in order to explore their phytochemical composition and biological potential. The bioactive contents were evaluated by conventional spectrophotometric methods. Additionally, the secondary metabolite compounds were identified by UHPLC-MS analysis. Biological potential was evaluated by determining antioxidant (DPPH, FRAP, and Phosphomolybdenum) and enzyme inhibitory (butrylcholinesterase and lipoxygenase) effects. Higher total bioactive contents were found in methanolic extracts which tend to correlate with higher radical scavenging and reducing potential of these extracts. LC/MS spectrum revealed the presence of 16 different secondary metabolites belonging to terpene, glucoside and sesquiterpenoid dervivatives. Glucocleomin and emotin A were the main compounds present in all three parts. The strongest butrylcholinesterase and lipoxygenase inhibitory activity was observed for root and stem DCM extracts. Demonstrated biological potential of S. oleoides plant can trace a new road map for developing newly designed bioactive pharmaceuticals.


Asunto(s)
Antioxidantes/farmacología , Inhibidores Enzimáticos/farmacología , Componentes Aéreos de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Salvadoraceae/metabolismo , Antioxidantes/química , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Metanol/química , Fitoquímicos/análisis , Componentes Aéreos de las Plantas/química , Extractos Vegetales/química , Raíces de Plantas/química , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Salvadoraceae/química , Metabolismo Secundario , Sesquiterpenos/análisis , Sesquiterpenos/metabolismo
19.
Food Chem Toxicol ; 131: 110535, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31154083

RESUMEN

This study endeavours to investigate the phytochemical composition, biological properties and in vivo toxicity of methanol and dichloromethane extracts of Zaleya pentandra (L.) Jeffrey. Total bioactive contents, antioxidant (phosphomolybdenum and metal chelating, DPPH, ABTS, FRAP and CUPRAC) and enzyme inhibition (cholinesterases, tyrosinase α-amylase, and α-glucosidase) potential were assessed utilizing in vitro bioassays. UHPLC-MS phytochemical profiling was carried out to identify the essential compounds. The methanol extract was found to contain highest phenolic (22.60 mg GAE/g) and flavonoid (31.49 mg QE/g) contents which correlate with its most significant radical scavenging, reducing potential and tyrosinase inhibition. The dichloromethane extract was most potent for phosphomolybdenum, ferrous chelation, α-amylase, α-glucosidase, and cholinesterase inhibition assays. UHPLC-MS analysis of methanol extract unveiled to identify 11 secondary metabolites belonging to five sub-groups, i.e., phenolic, alkaloid, carbohydrate, terpenoid, and fatty acid derivatives. Additionally, in vivo toxicity was conducted for 21 days and the methanol extract at different doses (150, 200, 250 and 300 mg/kg) was administered in experimental chicks divided into five groups each containing five individuals. Different physical, haematological and biochemical parameters along with the absolute and relative weight of visceral body organs were studied. Overall, no toxic effect was noted for the extract at tested doses.


Asunto(s)
Aizoaceae/química , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Administración Oral , Animales , Pollos , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/toxicidad , Depuradores de Radicales Libres/administración & dosificación , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/toxicidad , Metanol/química , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química
20.
J Pharm Biomed Anal ; 170: 132-138, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-30921647

RESUMEN

The current research work was conducted in order to probe into the biochemical and toxicological characterisation of methanol and dichloromethane (DCM) extracts of Bougainvillea glabra (Choisy.) aerial parts. Biological fingerprints were assessed for in vitro antioxidant, key enzyme inhibitory and cytotoxicity potential. Total bioactive contents were determined spectrophotometrically and the secondary metabolite components of methanol extract was assessed by UHPLC mass spectrometric analysis. The antioxidant capabilities were evaluated via six different in vitro antioxidant assays namely DPPH, ABTS (free radical scavenging), FRAP, CUPRAC (reducing antioxidant power), phosphomolybdenum (total antioxidant capacity) and ferrous chelating activity. Inhibition potential against key enzymes urease, α-glucosidase and cholinesterases were also determined. Methanol extract exhibited higher phenolic (24.01 mg GAE/g extract) as well as flavonoid (41.51 mg QE/g extract) contents. Phytochemical profiling of methanol extract identified a total of twenty secondary metabolites and the major compounds belonged to flavonoids, phenolics and alkaloid derivatives. The findings of antioxidant assays revealed the methanol extract to exhibit stronger antioxidant (except phosphomolybdenum) activities. Similarly, the methanol extract showed highest butyrylcholinesterase and urease inhibition. The DCM extract was most active for phosphomolybdenum and α-glucosidase inhibition assays. Moreover, both extracts exhibited significant cytotoxic potential against five (MCF-7, MDA-MB-231, CaSki, DU-145, and SW-480) human carcinoma cell lines with half maximal inhibitory concentration values of 22.09 to 257.2 µg/mL. Results from the present study highlighted the potential of B. glabra aerial extracts to be further explored in an endeavour to discover novel phytotherapeutics as well as functional ingredients.


Asunto(s)
Nyctaginaceae/química , Componentes Aéreos de las Plantas/química , Extractos Vegetales/química , Antioxidantes/química , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/química , Inhibidores de Glicósido Hidrolasas/química , Humanos , Células MCF-7 , Metanol/química , Fenoles/química , Fitoquímicos/química , alfa-Glucosidasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA