Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 919: 170801, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340858

RESUMEN

Addressing soil salinization and implementing sustainable practices for cultivating cash crops on saline-alkali land is a prominent global challenge. Cynomorium songaricum is an important salt-alkali tolerant medicinal plant capable of adapting to saline-alkali environments. In this study, two typical ecotypes of C. songaricum from the desert-steppe (DS) and saline-alkali land (SAL) habitats were selected. Through the integration of multi-omics with machine learning, the rhizosphere microbial communities, genetic maps, and metabolic profiles of two ecotypes were created and the crucial factors for the adaptation of C. songaricum to saline-alkali stress were identified, including 7 keystone OTUs (i.e. Novosphingobium sp., Sinorhizobium meliloti, and Glycomyces sp.), 5 core genes (cell wall-related genes), and 10 most important metabolites (i.e. cucurbitacin D and 3-Hydroxybutyrate) were identified. Our results indicated that under saline-alkali environments, the microbial competition might become more intense, and the microbial community network had the simple but stable structure, accompanied by the changes in the gene expression related to cell wall for adaptation. However, this regulation led to the reduction in active ingredients, such as the accumulation of flavonoids and organic acid, and enhanced the synthesis of bitter substances (cucurbitacin D), resulting in the decrease in the quality of C. songaricum. Therefore, compared to the SAL ecotype, the DS was more suitable for the subsequent development of medicinal and edible products of C. songaricum. Furthermore, to explore the reasons for this quality variation, we constructed a comprehensive microbial-genetic-metabolic regulatory network, revealing that the metabolism of C. songaricum was primarily influenced by genetic factors. These findings not only offer new insights for future research into plant salt-alkali tolerance strategies but also provide a crucial understanding for cultivating high-quality medicinal plants.


Asunto(s)
Cynomorium , Microbiota , Triterpenos , Transcriptoma , Cynomorium/química , Cynomorium/fisiología , Álcalis , Metaboloma
2.
Sci Rep ; 13(1): 13474, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596340

RESUMEN

The encapsulation of plant extract in nanomatrices has limitations due to its adhesion to walls, size control, high cost and long durations that results in low yield. Macroscale and microscale level techniques for development of micro/nanoparticles may impact the encapsulation of plant extract. This study aimed to evaluate the relative efficiency of microscale and macroscale techniques for encapsulation of plant extract, which is not compared yet. Keeping this in view, encapsulation of Calotropis gigantea leaves extract (CaG) was attained in silver-conjugated poliglusam nanomatrices (POL/Ag) to induce apoptosis in invasive ductal carcinoma (IDC) cells. The ethanolic CaG extract was prepared using percolation method and characterized by chemical tests for its active phytochemical compounds. The droplet-based microfluidic system was utilized as microscale encapsulation technique for CaG in nanomatrices at two different aqueous to oil flow rate ratios 1.0:1.5, and 1.0:3.0. Moreover, conventional batch system was utilized as macroscale encapsulation technique consisted of hot plate magnetic stirrer. The prepared nanomatrices were analysed for antioxidant activity using DPPH test and for cytotoxicity analysis using MCF-7 cells. The characteristic peaks of UV-Vis, FTIR and XRD spectrum confirmed the synthesis of CaG(POL/Ag) by both the encapsulation methods. However, microfluidic system was found to be more expedient because of attaining small and uniform sized silver nanoparticles (92 ± 19 nm) at high flow rate and achieving high encapsulation efficiency (80.25%) as compared to the conventional batch method (52.5%). CaG(POL/Ag) nanomatrices found to have significant antioxidant activity (p = 0.0014) against DPPH radical scavenging activity. The CaG(POL/Ag) of the smallest sized formulated by the microfluidic system has also shown the highest cytotoxicity (90%) as compared to batch method (70%) at 80 µg/mL. Our results indicate that the microscale technique using microfluidic system is a more efficient method to formulate size-controlled CaG(POL/Ag) nanomatrices and achieve high encapsulation of plant extract. Additionally, CaG(Pol/Ag) was found to be an efficient new combination for inducing potent (p < 0.0001) apoptosis in IDC cells. Therefore, CaG(Pol/Ag) can be further tested as an anti-cancer agent for in-vivo experiments.


Asunto(s)
Calotropis , Carcinoma Ductal , Nanopartículas del Metal , Plata , Antioxidantes/farmacología , Extractos Vegetales/farmacología
3.
Artículo en Inglés | MEDLINE | ID: mdl-37143509

RESUMEN

The oxadiazole ring has long been used for the treatment of several diseases. This study aimed to analyze the antihyperglycemic and antioxidant roles of the 1,3,4-oxadiazole derivative with its toxicity. Diabetes was induced through intraperitoneal administration of alloxan monohydrate at 150 mg/kg in rats. Glimepiride and acarbose were used as standards. Rats were divided into groups of normal control, disease control, standard, and diabetic rats (treated with 5, 10, and 15 mg/kg of 1,3,4-oxadiazole derivative). After 14 days of oral administration of 1,3,4-oxadiazole derivatives (5, 10, and 15 mg/kg) to the diabetic group, the blood glucose level, body weight, glycated hemoglobin (HbA1c), insulin level, antioxidant effect, and histopathology of the pancreas were performed. The toxicity was measured by estimating liver enzyme, renal function, lipid profile, antioxidative effect, and liver and kidney histopathological study. The blood glucose and body weight were measured before and after treatment. Alloxan significantly increased blood glucose levels, HbA1c, alanine transaminase, aspartate aminotransferase, urea, cholesterol, triglycerides, and creatinine. In contrast, body weight, insulin level, and antioxidant factors were reduced compared to the normal control group. Treatment with oxadiazole derivatives showed a significant reduction in blood glucose levels, HbA1c, alanine transaminase, aspartate aminotransferase, urea, cholesterol, triglycerides, and creatinine as compared to the disease control group. The 1,3,4-oxadiazole derivative significantly improved body weight, insulin level, and antioxidant factors compared to the disease control group. In conclusion, the oxadiazole derivative showed potential antidiabetic activity and indicated its potential as a therapeutic.

4.
Front Pharmacol ; 14: 1111915, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817163

RESUMEN

Silibinin (SIL), a flavolignan extracted from the medicinal plant "silybum marianum (milk thistle)", has traditionally been used to treat liver disease. This phytochemical has displayed neuroprotective properties, its activity against schizophrenia is not elucidated. The present study was designed to evaluate the antipsychotic potential of silibinin and probe its toxic potential. The acute oral toxicity study was assessed as per OECD 425 guidelines. Animals were divided into two groups of female rats (n = 6): one group served as the normal control and the other group received a 2,000 mg/kg dose of SIL. We also evaluated the antipsychotic potential of SIL. To this end, animals were divided into six groups (n = 10) of mice for both the preventive and curative protocols. Group I (CMC 1 mL/kg) served as the normal control and received CMC 1 mL/kg; group II was the diseased group treated with ketamine (10 mg/kg) i.p; group III was the standard group treated with clozapine 1 mg/kg; groups IV, V, and VI served as the treatment groups, receiving SIL 50, 100, and 200 mg/kg, respectively, orally for both protocols. Improvement in positive symptoms of the disease was evaluated by stereotypy and hyperlocomotion, while negative symptoms (behavioral despair) were determined by a forced swim test and a tail suspension test in the mice models. The results suggested that the LD50 of SIL was greater than 2,000 mg/kg. Moreover, SIL prevented and reversed ketamine-induced increase in stereotypy (p < 0.001) and behavioral despair in the forced swim and tail suspension tests (p < 0.001). Taken together, the findings suggest that silibinin is a safe drug with low toxicity which demonstrates significant antipsychotic activity against the positive and negative symptoms of schizophrenia.

5.
Biol Trace Elem Res ; 201(8): 4143-4155, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36355264

RESUMEN

Diversity in eleven Artemisia species from northern Pakistan was assessed based on as per suitability of their elemental contents with thermal conductivity detection and ICP-AES procedures. Results indicated the presence of 13 major elements in the Artemisia species with varied concentrations including Carbon (45.7%, 45,7000 ppm-49.8%, 49,8000 ppm), Nitrogen (2.03%, 20,300 ppm-3.50%, 35,000 ppm), Phosphorus (0.168%, 1680 ppm-0.642%, 6420 ppm), Potassium (2.38%, 23,800 ppm-4.72%, 47,200 ppm), Sulphur (1920 ppm, 0.192%-4780 ppm, 0.478%), Boron (23.8 ppm, 0.00238%-71.7 ppm, 0.00717%), Calcium (0.733%, 7330 ppm-2.249%, 22,490 ppm), Magnesium (0.116%, 1160 ppm-0.267%, 2670 ppm), Zinc (27.7 ppm, 0.00277%-47.9 ppm, 0.00479%), Manganese (25.7 ppm, 0.00257%-93.8 ppm, 0.00938%), Iron (353 ppm, 0.0353%-1532 ppm, 0.1532%), Copper (14.1 ppm, 0.00141%-26.2 ppm, 0.00262%) and Sodium (105 ppm, 0.0105%-587 ppm, 0.0587%). Cluster analysis distributed the Artemisia species into two major groups (G1 and G2) on the basis of their elemental content where G1 contained species like, Artemisia herba alba Asso., A. tournefortiana Rachb., A. rutifolia Steph. ex Spreng., and A. vulgaris L., with the presence of all elements with the maximum amount of S, Zn, P, Ca, and Mg, while G2 contained species like Artemisia biennis Willd., A. chamaemelifolia Vill., A. capillaris, L., A. gmelinii Weber ex Stech., A. indica Willd., A. maritima L., and A. verlotiorum Lamotte., with all elements but significant concentrations of B, N, C, K, Mn, Fe, Cu, and Na. PCA analysis displayed maximum species diversity in the axes two, while axes one showed lower diversity. Additionally, the elevated levels of elements recorded as compared to the threshold levels recommended in the literature for medicinal plants require extraordinary precautionary measures before or during using Artemisia as medication to avoid metal toxicity.


Asunto(s)
Artemisia , Oligoelementos , Espectrofotometría Atómica/métodos , Pakistán , Cobre/análisis , Zinc/análisis , Sodio/análisis , Oligoelementos/análisis
6.
Metab Brain Dis ; 38(2): 483-505, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35344129

RESUMEN

Mangifera indica L., also known as mango, is a tropical fruit that belongs to the Anacardiaceae family and is prized for its juiciness, unique flavour, and worldwide popularity. The current study aimed to probe into antidepressant power (ADP) of MIS in animals and confirmation of ADP with in silico induced-fit molecular docking. The depression model was prepared by exposing mice to various stressors from 9:00 am to 2:00 pm during 42 days study period. MIS extract and fluoxetine were given daily for 30 min before exposing animals to stressors. ADP was evaluated by various behavioural tests and biochemical analysis. Results showed increased physical activity in mice under behavioural tests, plasma nitrite and malondialdehyde (MDA) levels and monoamine oxidase A (MAO-A) activity decreased dose-dependently in MIS treated mice and superoxide dismutases (SOD) levels increased in treated groups as compared to disease control. With the peculiar behaviour and significant interactions of the functional residues of target proteins with selected ligands along with the best absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, it is concluded that catechin could be the best MAO-A inhibitor at a binding energy of -8.85 kcal/mol, and two hydrogen bonds were generated with Cys406 (A) and Gly443 (A) residues of the active binding site of MAO-A enzyme. While catechin at -6.86 kcal/mol generated three hydrogen bonds with Ala263 (A) and Gly434 (A) residues of the active site of monoamine oxidase B (MAO-B) enzyme and stabilized the best conformation. Therefore, it is highly recommended to test the selected lead-like compound catechin in the laboratory with biological system analysis to confirm its activity as MAO-A and MAO-B inhibitors so it can be declared as one of the novel therapeutic options with anti-depressant activity. Our findings concluded that M. indica seeds could be a significant and alternative anti-depressant therapy.


Asunto(s)
Catequina , Mangifera , Ratones , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/química , Mangifera/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Simulación del Acoplamiento Molecular , Catequina/análisis , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Semillas/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
7.
Biomed Res Int ; 2022: 1373160, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467883

RESUMEN

Convolvulus arvensis L. is rich in phenolic compounds and traditionally used to treat wounds, skin ulcer, and inflammation. The current study is aimed at scientifically potentiating its traditional wound healing use. The methanolic extract of C. arvensis stem (CaME) was analyzed for HPLC and GC-MS analyses. The binding modes of active compounds were investigated against protein targets glycogen synthase kinase-3ß (GSK-3ß), transforming growth factor-beta (TGF-ß), c-myc, and ß-catenin by molecular docking followed by molecular dynamic simulations which revealed some conserved mode of binding as reported in crystal structures. The antioxidant potential of CaME was evaluated by in vitro methods such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, hydrogen peroxide scavenging, and ferric reducing power assays. Ointment formulations of 10 and 20% CaME were applied topically and evaluated for wound healing potency against the excisional wound on the skin of Wistar rats. Gentamycin (0.1%) served as standard therapy. The healing process was observed for 20 days in the form of wound size and epithelialization followed by histopathological evaluation of the wound area. Chemical characterization showed the presence of 7-hexadecenoic acid, 2-hexadecylicosan-1-ol, quercetin, gallic acid, ferulic acid, and other compounds. The plant extract exhibited significant in vitro antioxidant activity. The animals treated with 10% ointment showed moderate healing, whereas the treatment with 20% CaME revealed healing potential comparable to the standard 0.1% gentamycin as coevidenced from histopathological evaluation of skin. The study corroborates promising potential of C. arvensis on the healing of wounds, which possibly will be attributed to its antioxidant activity, fatty acids, quercetin, and gallic and caffeic acids, and binding potential of its phytoconstituents (phenolic acids) with wound healing targets.


Asunto(s)
Convolvulus , Ratas , Animales , Ratas Wistar , Metanol , Pomadas , Quercetina , Antioxidantes/farmacología , Glucógeno Sintasa Quinasa 3 beta , Simulación del Acoplamiento Molecular , Cicatrización de Heridas , Emolientes , Extractos Vegetales/farmacología , Gentamicinas
8.
Front Pharmacol ; 13: 1002037, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353479

RESUMEN

In many developing countries, medicinal plants have long been used for therapeutic purposes due to their low cost and toxicity. This study evaluated the safety and anti-arthritic potential of Alternanthera bettzickiana ethanolic extract (ABEE). Acute oral toxicity (OECD 425) was tested in the safety evaluation. A limit test was used to identify the LD50 value. For an acute oral toxicity study a dose of 2000 mg/kg of ABEE was given orally to the treatment group, and the control group received distilled water at a rate of 10 ml/kg. Biochemical, hematological, and histopathological analyses were performed after 14 days. A formaldehyde 2% w/v solution was injected via i.p. to rats of all groups to prepare the arthritic model. Five groups were divided into control (D.H2O), standard (Diclofenac), and three groups receiving the plant extract at dose levels of 125 mg/kg, 250 mg/kg, and 500 mg/kg respectively. Treatment was continued for 10 days. Paw diameter and hematological and biochemical variables were quantified. ELISA was performed for the estimation of inflammatory cytokines. In the acute oral toxicity study, no mortality or morbidity were observed, so the LD50 of this plant was greater than 2000 mg/kg. ABEE decreased the paw diameter with the restoration of hematological and biochemical changes. SOD and CAT levels were increased while decreasing the MDA, NO, TNF-α, and IL-6 levels in arthritic rats. It is concluded that the use of A. bettzickiana has low toxicity, and it can be used for the treatment of arthritis.

9.
Front Nutr ; 9: 1005341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304231

RESUMEN

Background: Ethnopharmacological relevance: Brugmansia, a genus of the Solanaceae family, has historically been utilized in many different parts of the world as an anti-inflammatory for treating skin infections, wounds, and bodily aches and pains. The current study aimed to investigate the potential benefits of a methanolic extract of Brugmansia aurea in the management of diabetes and underlying complications in alloxanized-induced diabetic rats. Materials and methods: Animals were divided into nine groups (n = 6). Four groups received different standard oral hypoglycemic agents; three groups received 100, 200, and 400 mg/kg of B. aurea leaf extract for six consecutive weeks, and the remaining two were normal and disease control groups. All groups received alloxan (150 mg/kg) except for the normal control. Only those animals whose glucose levels were raised to 200 mg/dl were selected for the study. After a 6-week dosage period, various biochemical parameters, as well as HbA1c, antioxidant profile, oral glucose tolerance test (OGTT), insulin sensitivity, histopathology, and insulin resistance, were measured and compared with the untreated diabetic group. Results: Brugmansia aurea leaf extract at a dose of 400 mg/kg showed potent antidiabetic activity by reducing blood glucose levels (p < 0.001) after 6 weeks of treatment. OGTT data showed that B. aurea exhibited significant (p < 0.001) glucose tolerance by significantly reducing blood glucose levels in just 2 h post-treatment. Other tests showed that plant extract significantly increased (p < 0.001) insulin sensitivity and decreased (p < 0.001) insulin resistance. The biochemical profile showed reduced triglyceride and cholesterol, while the antioxidant profile showed restoration of antioxidant enzymes in the pancreas, kidney, and liver tissues of treated rats. Conclusion: The present study indicated that crude extracts of B. aurea increase insulin sensitivity and reduce hyperlipidemia in diabetic rats, which rationalizes the traditional medicinal use of this plant as an antidiabetic agent.

10.
Front Pharmacol ; 13: 1007310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36210854

RESUMEN

Drugs obtained from medicinal plants have always played a pivotal role in the field of medicine and to identify novel compounds. Safety profiling of plant extracts is of utmost importance during the discovery of new biologically active compounds and the determination of their efficacy. It is imperative to conduct toxicity studies before exploring the pharmacological properties and perspectives of any plant. The present work aims to provide a detailed insight into the phytochemical and toxicological profiling of methanolic extract of Zephyranthes citrina (MEZ). Guidelines to perform subacute toxicity study (407) and acute toxicity study (425) provided by the organization of economic cooperation and development (OECD) were followed. A single orally administered dose of 2000 mg/kg to albino mice was used for acute oral toxicity testing. In the subacute toxicity study, MEZ in doses of 100, 200, and 400 mg/kg was administered orally, consecutive for 28 days. Results of each parameter were compared to the control group. In both studies, the weight of animals and their selected organs showed consistency with that of the control group. No major toxicity or organ damage was recorded except for some minor alterations in a few parameters such as in the acute study, leukocyte count was increased and decreased platelet count, while in the subacute study platelet count increased in all doses. In the acute toxicity profile liver enzymes Alanine aminotransferase (ALT), as well as, aspartate aminotransferase (AST) were found to be slightly raised while alkaline phosphatase (ALP) was decreased. In subacute toxicity profiling, AST and ALT were not affected by any dose while ALP was decreased only at doses of 200 and 400 mg/kg. Uric acid was raised at a dose of 100 mg/kg. In acute toxicity, at 2000 mg/kg, creatinine and uric acid increased while urea levels decreased. Therefore, it is concluded that the LD50 of MEZ is more than 2000 mg/kg and the toxicity profile of MEZ was generally found to be safe.

11.
Pak J Pharm Sci ; 35(1(Supplementary)): 323-333, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35228194

RESUMEN

Present study investigate the in-vitro antibacterial and antifungal potential of Typha elephantina leaves aqueous extract (T. Eaq), ethanolic extract (T. Eeth) and methanolic extract (T. Emth) at different dosages against selected bacteria and fungi using dis diffusion method and Potato Dextrose Agar method. The study was also proceeded in- vivo against one strain of fungi (Aspergillus niger) using aqueous (T. Eaq) extract only. In-vitro study showed that Citrobacter freundii was highly sensitive while Salmonella typhimurium was the least among all. The antifungal activity was dose dependent and differs according to the fungal strain. Aspergillus niger was highly sensitive in order of aqueous extract (T. Eaq), ethanolic extract (T. Eeth) and methanolic extract (T.Emth), followed by Alterneria solani, Candida albicans and Aspergillus ustus. The in-vivo antifungal study was carried using Cyprinus carpio which were first infected with Aspergillus niger and then treated with (T. Eaq) at different doses. During in-vivo study various hematobiochemicl parameters and bio-accumulative stress of some heavy metals were assessed. Highly significant (P<0.05) remedial effects were observed at day 21st of treatment with extract at 100mg/ kg body weight. Differential accumulation was found i.e in skin the accumulation was highest followed by intestine gills and muscles tissues. Liver showed least accumulation.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Aspergilosis/veterinaria , Extractos Vegetales/farmacología , Hojas de la Planta/química , Typhaceae/química , Animales , Antibacterianos/química , Antibacterianos/uso terapéutico , Antifúngicos/química , Aspergilosis/tratamiento farmacológico , Bacterias/efectos de los fármacos , Carpas , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Hongos/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico
12.
Front Biosci (Landmark Ed) ; 26(11): 1031-1051, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34856751

RESUMEN

Background: Parkinson's disease (PD) is associated with progressive neuronal damage and dysfunction. Oxidative stress helps to regulate neurodegenerative and neuronal dysfunction. Natural compounds could attenuate oxidative stress in a variety of neurological disorders. B. juncea is a rich source of antioxidants. The present study aimed to evaluate the therapeutic potential of B. juncea leaves for the treatment of PD by applying behavioral, in vivo and in silico studies. For in vivo studies rats were divided into six groups (n = 6). Group-I served as normal control (vehicle control). Group-II was disease control (haloperidol 1 mg/kg). Group-III was kept as a standard group (L-Dopa 100 mg/kg + carbidopa 25 mg/kg). Groups (IV-VI) were the treatment groups, receiving extract at 200-, 400- and 600 mg/kg doses respectively, for 21 days orally. Results: In vivo study results showed that the extract was found to improve muscles strength, motor coordination, and balance in PD. These behavioral outcomes were consistent with the recovery of endogenous antioxidant defence in biochemical analysis which was further corroborated with histopathological ameliorations. Dopamine levels increased and monoamine oxidase B (MAO-B) levels decreased dose-dependently in the brain during the study. Herein, we performed molecular docking analysis of the proposed extracted phytochemicals has explained that four putative phytochemicals (sinapic acid, rutin, ferulic acid, and caffeic acid) have presented very good results in terms of protein-ligand binding interactions as well as absorption, distribution, metabolism, excretion & toxicity (ADMET) profile estimations. Conclusion: The undertaken study concluded the anti-Parkinson activity of B. juncea and further suggests developments on its isolated compounds in PD therapeutics.


Asunto(s)
Levodopa , Planta de la Mostaza , Animales , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Ratas
13.
IET Nanobiotechnol ; 15(1): 1-18, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34694726

RESUMEN

Published studies indicate that virtually any kind of botanical material can be exploited to make biocompatible, safe, and cost-effective silver nanoparticles. This hypothesis is supported by the fact that plants possess active bio-ingredients that function as powerful reducing and coating agents for Ag+. In this respect, a phytomediation method provides favourable monodisperse, crystalline, and spherical particles that can be easily purified by ultra-centrifugation. However, the characteristics of the particles depend on the reaction conditions. Optimal reaction conditions observed in different experiments were 70-95 °C and pH 5.5-8.0. Green silver nanoparticles (AgNPs) have remarkable physical, chemical, optical, and biological properties. Research findings revealed the versatility of silver particles, ranging from exploitation in topical antimicrobial ointments to in vivo prosthetic/organ implants. Advances in research on biogenic silver nanoparticles have led to the development of sophisticated optical and electronic materials with improved efficiency in a compact configuration. So far, eco-toxicity of these nanoparticles is a big challenge, and no reliable method to improve the toxicity has been reported. Therefore, there is a need for reliable models to evaluate the effect of these nanoparticles on living organisms.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos , Tecnología Química Verde , Extractos Vegetales
14.
Saudi J Biol Sci ; 28(8): 4324-4328, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34354415

RESUMEN

Present study focuses on ameliorative potential of Typha elephantina leave's aqueous (TE.AQ) extract against Paracetamol (PCM) induced toxicity in rabbits. We fed the male rabbits with 300 mg PCM in alone and in combination with TE.AQ at different doses i.e. (100, 200 and 300 mg/kg body weight) or silymarin (100 mg/kg) daily for 21 days. PCM in alone significantly (P < 0.5) increased serum urea, uric acid, creatinine, total protein, albumin, globulin and blood urea nitrogen. Serum sodium, potassium and magnesium level were high. The glutathione, radical scavenging activity and Thiobarbituric acid reactive substances were significantly reduced. Treatment with TE.AQ at dose rate 300 mg/kg body weight and Silymarin significantly ameliorated all the parameters when compared with PCM administered group. The 100 and 200 mg of TE.AQ showed no significant effects. The histopathological examination confirmed the therapeutic potential of TE.AQ. These results established the presence of natural antioxidants in Typha elephantina leaves.

15.
Pak J Pharm Sci ; 34(2(Supplementary)): 737-745, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34275809

RESUMEN

Present study is aimed to investigate the hepatoprotective and hematopoietic effect of Typha elephantina leaves aqueous (T.E.AQ), extract in paracetamol (PCM) intoxicated rabbits. Experimental animals were divided into various groups. The blood was taken on day 7th (W1=Week 1), day 14th (W2 = week 2) and day 21st (W3 = week 3) of treatments and was analyzed for all hematological and serum biochemical markers. PCM administration caused marked increase in the levels of serum biochemical and hematological parameters. The leaves of T.E.AQ extract at dose rate 300mg/kg body weight significantly (P<0.05) reduced the elevated levels of serum biochemical and hematological indices towards normal values on third week (day 21st) of treatment while treatment in the first two weeks revealed non-significant effects even at all doses of extract. The levels of glutathione (GSH) and radical scavenging activity (RSA) were reduced and thiobarbituric acid reactive substances (TBARS) levels was high in the PCM feed animals. Administration of (T.E.AQ) extract at high dose (300mg/kg) significantly regulated and normalized these antioxidant values. The antioxidant capacity of (TE.AQ) extract, showed increase inhibition against various extract concentrations on the basis of percent scavenging of (DPPH) free radical. The histological sections of liver further supported the hepatoprotective activity of extract.


Asunto(s)
Acetaminofén/antagonistas & inhibidores , Analgésicos no Narcóticos/toxicidad , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Typhaceae/química , Acetaminofén/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Depuradores de Radicales Libres/metabolismo , Glutatión/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Conejos
16.
Onco Targets Ther ; 14: 1821-1841, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732000

RESUMEN

Cancer is the second leading cause of mortality worldwide. Conventional therapies, including surgery, radiation, and chemotherapy, have limited success because of secondary resistance. Therefore, safe, non-resistant, less toxic, and convenient drugs are urgently required. Natural products (NPs), primarily sourced from medicinal plants, are ideal for cancer treatment because of their low toxicity and high success. NPs cure cancer by regulating different pathways, such as PI3K/AKT/mTOR, ER stress, JNK, Wnt, STAT3, MAPKs, NF-kB, MEK-ERK, inflammation, oxidative stress, apoptosis, autophagy, mitophagy, and necroptosis. Among the NPs, steroid saponins, including polyphyllins (I, II, D, VI, and VII), have potent pharmacological, analgesic, and anticancer activities for the induction of cytotoxicity. Recent research has demonstrated that polyphyllins (PPs) possess potent effects against different cancers through apoptosis, autophagy, inflammation, and necroptosis. This review summarizes the available studies on PPs against cancer to provide a basis for future research.

17.
Metab Brain Dis ; 36(6): 1231-1251, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33759084

RESUMEN

Cucurbita pepo is used as a vegetable in Pakistan and its seeds are also rich in tocopherol. Data showed the pivotal role of tocopherol in the treatment of Parkinson's disease (PD). The current study was designed to probe into the antiparkinson activity of methanolic extract of C. pepo (MECP) seeds in the haloperidol-induced Parkinson rat model. Behavioral studies showed improvement in motor functions. The increase in catalase, superoxide dismutase, glutathione levels whereas the decreases in the malondialdehyde and nitrite levels were noted in a dose-dependent manner. Acetylcholine-esterase (AchE) activity was increased. Molecular docking results revealed significant binding interaction of selected phytoconstituents within an active site of target protein AchE (PDB ID: 4EY7). Furthermore, α-synuclein was up regulated with down regulation of TNF-α and IL-1ß in the qRT-PCR study. Subsequently, ADMET results on the basis of structure to activity predictions in terms of pharmacokinetics and toxicity estimations show that selected phytochemicals exhibited moderately acceptable properties. These properties add knowledge towards the structural features which could improve the bioavailability of selected phytochemicals before moving towards the initial phase of the drug development. Our integrated drug discovery scheme concluded that C. pepo seeds could ameliorate symptoms of PD and may prove a lead remedy for the treatment of PD.


Asunto(s)
Antiparkinsonianos/farmacología , Cucurbita/química , Enfermedad de Parkinson/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Antioxidantes/farmacología , Cucurbita/metabolismo , Malondialdehído/metabolismo , Ratas , Superóxido Dismutasa/metabolismo
18.
Metab Brain Dis ; 36(5): 889-900, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33570733

RESUMEN

Alzheimer's disease affects daily routine due to loss of memory and decline in cognition. In vitro data showed acetylcholine esterase inhibition activity of Malva neglecta but no in vivo evidence is available. The current study aims to investigate the anti-Alzheimer's activity of Malva neglecta methanolic extract in the AlCl3-induced Alzheimer disease rats' model. Thirty Wistar rats were divided into six groups and respective doses were given orally for 21 days. Behavioural observations were recorded and biochemical analysis was performed on brain homogenate. Improvement in memory and cognition was noted in treated rats as compared to disease control. A dose-dependent decrease (0.530 ± 0.009 at 200 mg/kg, 0.212 ± 0.007 at 400 mg/kg, 0.173 ± 0.005 at 600 mg/kg) in AChE activity was noted in the treatment groups with reference to disease control value (1.572 ± 0.013). This decrease in AChE activity is linked with an increase in acetylcholine in the brain which plays a key role in retaining memory. Oxidative stress biomarkers; GSH (66.77 ± 0.01 at 600 mg/kg), SOD (26.60 ± 0.10 at 600 mg/kg), CAT (21.46 ± 0.01 at 600 mg/kg) levels were increased with a decrease in MDA (103.33 ±0.49 at 600 mg/kg) level in a dose-dependently manner in the treatment groups as compared to disease control respective values. It is concluded that Malva neglecta could ameliorate Alzheimer's symptoms possibly by decreasing AChE activity and oxidative stress.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Colinesterasas/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Cognición/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Glutatión/metabolismo , Masculino , Malva , Aprendizaje por Laberinto/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/fisiología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo
19.
Artif Cells Nanomed Biotechnol ; 49(1): 194-203, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33629627

RESUMEN

This study deals with facile and rapid synthesis of silver nanoparticles (AgNPs) and Gold nanoparticles (AuNPs) using Mentha longifolia leaves extracts (MLE). The synthesized AgNPs and AuNPs were characterized by UV-visible spectroscopy (UV-Vis), Fourier transformed infra-red spectroscopy (FT-IR), atomic force microscopy (AFM) and transmission electron microscopy (TEM) techniques. The phytochemical analysis showed the presence of bioactive secondary metabolites, which are involved in the synthesis of nanoparticles (NPs). The surface plasmon resonance (SPR) observed at 435 and 550 nm, confirmed the green synthesis of AgNPs and AuNPs, respectively. The TEM images showed poly dispersed and round oval shapes of Ag and Au NPs with an average particles size of 10.23 ± 2 nm and 13.45 ± 2 nm, respectively. TEM results are in close agreements with that of AFM analysis. The FT-IR spectroscopy revealed the presence of OH, -NH2 and C = O groups, which involved in the synthesis of NPs. The MLE and their AgNPs and AuNP exhibited good in vitro antibacterial and anti-oxidant activities. Moreover, MLE and NPs also showed in vivo analgesic activities in mice, and excellent sedative properties in open field test paradigm.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Mentha/química , Nanopartículas del Metal/química , Methanomicrobiaceae/química , Extractos Vegetales/química , Plata/química , Animales , Materiales Biocompatibles/síntesis química , Técnicas de Química Sintética , Oro , Tecnología Química Verde , Ratones
20.
Sci Rep ; 11(1): 2866, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536517

RESUMEN

In the present work, silver nanoparticles were prepared by using the extract of Camellia Sinensis. The extract contains phytochemicals which are mainly polyphenols acting as the natural reducing and stabilizing agents leading to the formation of uniformly dispersed and stabilized silver nanoparticles. The synthesis of silver nanoparticles was significantly influenced by the impact of the pH, as well as temperature conditions. It was found that at pH 5 and 25 °C, nanoparticles of different morphologies (spherical, polygonal, capsule) and sizes were formed. However, with the increase in temperature from 25 °C to 65 °C but at the same pH, these particles started attaining the spherical shape of different sizes owing to an increase in the reduction rate. Furthermore, for the reaction of the mixture at 65 °C, an increase in pH from 5 to 11 led to an increase in the monodispersity of spherically shaped nanoparticles, attributed to the hydroxide ions facilitated reduction. The prepared nanoparticles were investigated for their antibacterial activity using Nathan's Agar Well-Diffusion method. It was found that AgNPs prepared at pH 9 and 65 °C demonstrated strong antibacterial activity against gram-negative Escherichia coli in contrast to gram-positive Staphylococcus aureus. In reference to the cytotoxic potency, the prepared AgNPs showed clear cytotoxicity for HeLa cells and showcased a close relationship between activity and concentration as evidenced by the decrease in the percentage (100 to 30%) of metabolically active cells up to 25 µM-75 µM concentration of silver nanoparticles.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Camellia sinensis/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Antibacterianos/síntesis química , Antineoplásicos/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli/efectos de los fármacos , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Plata/química , Plata/farmacología , Staphylococcus aureus , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA