Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Ginseng Res ; 48(1): 12-19, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223826

RESUMEN

Skeletal muscle (SM) is the largest organ of the body and is largely responsible for the metabolism required to maintain body functions. Furthermore, the maintenance of SM is dependent on the activation of muscle satellite (stem) cells (MSCs) and the subsequent proliferation and fusion of differentiating myoblasts into mature myofibers (myogenesis). Natural compounds are being used as therapeutic options to promote SM regeneration during aging, muscle atrophy, sarcopenia, cachexia, or obesity. In particular, ginseng-derived compounds have been utilized in these contexts, though ginsenoside Rg1 is mostly used for SM mass management. These compounds primarily function by activating the Akt/mTOR signaling pathway, upregulating myogenin and MyoD to induce muscle hypertrophy, downregulating atrophic factors (atrogin1, muscle ring-finger protein-1, myostatin, and mitochondrial reactive oxygen species production), and suppressing the expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cachexia. Ginsenoside compounds are also used for obesity management, and their anti-obesity effects are attributed to peroxisome proliferator activated receptor gamma (PPARγ) inhibition, AMPK activation, glucose transporter type 4 (GLUT4) translocation, and increased phosphorylations of insulin resistance (IR), insulin receptor substrate-1 (IRS-1), and Akt. This review was undertaken to provide an overview of the use of ginseng-related compounds for the management of SM-related disorders.

2.
Phytomedicine ; 125: 155350, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237512

RESUMEN

BACKGROUND: Myostatin (MSTN) inhibition has demonstrated promise for the treatment of diseases associated with muscle loss. In a previous study, we discovered that Glycyrrhiza uralensis (G. uralensis) crude water extract (CWE) inhibits MSTN expression while promoting myogenesis. Furthermore, three specific compounds of G. uralensis, namely liquiritigenin, tetrahydroxymethoxychalcone, and Licochalcone B (Lic B), were found to promote myoblast proliferation and differentiation, as well as accelerate the regeneration of injured muscle tissue. PURPOSE: The purpose of this study was to build on our previous findings on G. uralensis and demonstrate the potential of its two components, Licochalcone A (Lic A) and Lic B, in muscle mass regulation (by inhibiting MSTN), aging and muscle formation. METHODS: G. uralensis, Lic A, and Lic B were evaluated thoroughly using in silico, in vitro and in vivo approaches. In silico analyses included molecular docking, and dynamics simulations of these compounds with MSTN. Protein-protein docking was carried out for MSTN, as well as for the docked complex of MSTN-Lic with its receptor, activin type IIB receptor (ACVRIIB). Subsequent in vitro studies used C2C12 cell lines and primary mouse muscle stem cells to acess the cell proliferation and differentiation of normal and aged cells, levels of MSTN, Atrogin 1, and MuRF1, and plasma MSTN concentrations, employing techniques such as western blotting, immunohistochemistry, immunocytochemistry, cell proliferation and differentiation assays, and real-time RT-PCR. Furthermore, in vivo experiments using mouse models focused on measuring muscle fiber diameters. RESULTS: CWE of G. uralensis and two of its components, namely Lic A and B, promote myoblast proliferation and differentiation by inhibiting MSTN and reducing Atrogin1 and MuRF1 expressions and MSTN protein concentration in serum. In silico interaction analysis revealed that Lic A (binding energy -6.9 Kcal/mol) and B (binding energy -5.9 Kcal/mol) bind to MSTN and reduce binding between it and ACVRIIB, thereby inhibiting downstream signaling. The experimental analysis, which involved both in vitro and in vivo studies, demonstrated that the levels of MSTN, Atrogin 1, and MuRF1 were decreased when G. uralensis CWE, Lic A, or Lic B were administered into mice or treated in the mouse primary muscle satellite cells (MSCs) and C2C12 myoblasts. The diameters of muscle fibers increased in orally treated mice, and the differentiation and proliferation of C2C12 cells were enhanced. G. uralensis CWE, Lic A, and Lic B also promoted cell proliferation in aged cells, suggesting that they may have anti-muslce aging properties. They also reduced the expression and phosphorylation of SMAD2 and SMAD3 (MSTN downstream effectors), adding to the evidence that MSTN is inhibited. CONCLUSION: These findings suggest that CWE and its active constituents Lic A and Lic B have anti-mauscle aging potential. They also have the potential to be used as natural inhibitors of MSTN and as therapeutic options for disorders associated with muscle atrophy.


Asunto(s)
Chalconas , Fibras Musculares Esqueléticas , Miostatina , Ratones , Animales , Miostatina/metabolismo , Simulación del Acoplamiento Molecular , Diferenciación Celular , Fibras Musculares Esqueléticas/metabolismo , Proliferación Celular , Músculo Esquelético/metabolismo
3.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139116

RESUMEN

Ginseng is usually consumed as a daily food supplement to improve health and has been shown to benefit skeletal muscle, improve glucose metabolism, and ameliorate muscle-wasting conditions, cardiovascular diseases, stroke, and the effects of aging and cancers. Ginseng has also been reported to help maintain bone strength and liver (digestion, metabolism, detoxification, and protein synthesis) and kidney functions. In addition, ginseng is often used to treat age-associated neurodegenerative disorders, and ginseng and ginseng-derived natural products are popular natural remedies for diseases such as diabetes, obesity, oxidative stress, and inflammation, as well as fungal, bacterial, and viral infections. Ginseng is a well-known herbal medication, known to alleviate the actions of several cytokines. The article concludes with future directions and significant application of ginseng compounds for researchers in understanding the promising role of ginseng in the treatment of several diseases. Overall, this study was undertaken to highlight the broad-spectrum therapeutic applications of ginseng compounds for health management.


Asunto(s)
Diabetes Mellitus , Enfermedades Neurodegenerativas , Panax , Humanos , Obesidad , Inflamación/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico
4.
Molecules ; 27(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35807547

RESUMEN

Myostatin (MSTN), a negative regulator of muscle mass, is reported to be increased in conditions linked with muscle atrophy, sarcopenia, and other muscle-related diseases. Most pharmacologic approaches that treat muscle disorders are ineffective, emphasizing the emergence of MSTN inhibition. In this study, we used computational screening to uncover natural small bioactive inhibitors from the Traditional Chinese Medicine database (~38,000 compounds) for the MSTN protein. Potential ligands were screened, based on binding affinity (150), physicochemical (53) and ADMET properties (17). We found two hits (ZINC85592908 and ZINC85511481) with high binding affinity and specificity, and their binding patterns with MSTN protein. In addition, molecular dynamic simulations were run on each complex to better understand the interaction mechanism of MSTN with the control (curcumin) and the hit compounds (ZINC85592908 and ZINC85511481). We determined that the hits bind to the active pocket site (Helix region) and trigger conformational changes in the MSTN protein. Since the stability of the ZINC85592908 compound was greater than the MSTN control, we believe that ZINC85592908 has therapeutic potential against the MSTN protein and may hinder downstream singling by inhibiting the MSTN protein and increasing myogenesis in the skeletal muscle tissues.


Asunto(s)
Medicina Tradicional China , Enfermedades Musculares/tratamiento farmacológico , Miostatina/antagonistas & inhibidores , Simulación por Computador , Evaluación Preclínica de Medicamentos , Simulación de Dinámica Molecular , Desarrollo de Músculos/efectos de los fármacos , Enfermedades Musculares/fisiopatología , Unión Proteica
5.
Int J Nanomedicine ; 16: 7711-7726, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34848956

RESUMEN

INTRODUCTION: Protein-derived biogenic syntheses of inorganic nanoparticles have gained immense attention because of their broad spectrum of applications. Proteins offer a reducing environment to enable the synthesis of nanoparticles and encapsulate synthesized nanoparticles and provide them temporal stability in addition to biocompatibility. METHODS: In the present study, Benincasa hispida fruit proteins were used to synthesize silver nanoparticles (AgNPs) at 37 °C over five days of incubation. The synthesis of AgNPs was confirmed by UV-Vis spectroscopy, TEM, zeta potential, and DLS analyses. Further, these NPs depicted antibacterial and antibiofilm effects. Additionally, the anticancer activities of nanoparticles were also tested against the lung cancer cell line (A549) with respect to the normal cell line (NRK) using MTT assay. Further, the estimation of ROS generation through DCFH-DA staining along with a reduction in mitochondrial membrane potential by Mito Tracker Red CMX staining was carried out. Moreover, nuclear degradation in the AgNPs treated cells was cross-checked by DAPI staining. RESULTS: The average size of AgNPs was detected to be 27 ±1 nm by TEM analysis, whereas surface encapsulation by protein was determined by FTIR spectroscopy. These NPs were effective against bacterial pathogens such as Escherichia coli, Staphylococcus aureus, Salmonella enteric, and Staphylococcus epidermis with MICs of 148.12 µg/mL, 165.63 µg/mL, 162.77 µg/mL, and 124.88 µg/mL, respectively. Furthermore, these nanoparticles inhibit the formation of biofilms of E. coli, S. aureus, S. enteric, and S. epidermis by 71.14%, 73.89%, 66.66%, and 64.81%, respectively. Similarly, these nanoparticles were also found to inhibit (IC50 = 57.11 µM) the lung cancer cell line (A549). At the same time, they were non-toxic against NRK cells up to a concentration of 200 µM. DISCUSSION: We successfully synthesized potentially potent antibacterial, antibiofilm and anticancer biogenic AgNPs.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos/farmacología , Escherichia coli , Frutas , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Plata/farmacología , Staphylococcus aureus
6.
Molecules ; 26(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34500839

RESUMEN

The skeletal muscle (SM) is the largest organ in the body and has tremendous regenerative power due to its myogenic stem cell population. Myostatin (MSTN), a protein produced by SM, is released into the bloodstream and is responsible for age-related reduced muscle fiber development. The objective of this study was to identify the natural compounds that inhibit MSTN with therapeutic potential for the management of age-related disorders, specifically muscle atrophy and sarcopenia. Sequential screening of 2000 natural compounds was performed, and dithymoquinone (DTQ) was found to inhibit MSTN with a binding free energy of -7.40 kcal/mol. Furthermore, the docking results showed that DTQ reduced the binding interaction between MSTN and its receptor, activin receptor type-2B (ActR2B). The global energy of MSTN-ActR2B was found to be reduced from -47.75 to -40.45 by DTQ. The stability of the DTQ-MSTN complex was subjected to a molecular dynamics analysis for up to 100 ns to check the stability of the complex using RMSD, RMSF, Rg, SASA, and H-bond number. The complex was found to be stable after 10 ns to the end of the simulation. These results suggest that DTQ blocks MSTN signaling through ActR2B and that it has potential use as a muscle growth-promoting agent during the aging process.


Asunto(s)
Benzoquinonas/química , Enfermedades Musculares/metabolismo , Miostatina/antagonistas & inhibidores , Sarcopenia/metabolismo , Receptores de Activinas Tipo II/metabolismo , Secuencia de Aminoácidos , Benzoquinonas/metabolismo , Benzoquinonas/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Cinética , Simulación de Dinámica Molecular , Fibras Musculares Esqueléticas , Enfermedades Musculares/tratamiento farmacológico , Unión Proteica , Conformación Proteica , Transducción de Señal
7.
Oxid Med Cell Longev ; 2021: 6347792, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557265

RESUMEN

Autophagy is an essential cellular process that involves the transport of cytoplasmic content in double-membraned vesicles to lysosomes for degradation. Neurons do not undergo cytokinesis, and thus, the cell division process cannot reduce levels of unnecessary proteins. The primary cause of neurodegenerative disorders (NDs) is the abnormal deposition of proteins inside neuronal cells, and this could be averted by autophagic degradation. Thus, autophagy is an important consideration when considering means of developing treatments for NDs. Various pharmacological studies have reported that the active components in herbal medicines exhibit therapeutic benefits in NDs, for example, by inhibiting cholinesterase activity and modulating amyloid beta levels, and α-synuclein metabolism. A variety of bioactive constituents from medicinal plants are viewed as promising autophagy controllers and are revealed to recover the NDs by targeting the autophagic pathway. In the present review, we discuss the role of autophagy in the therapeutic management of several NDs. The molecular process responsible for autophagy and its importance in various NDs and the beneficial effects of medicinal plants in NDs by targeting autophagy are also discussed.


Asunto(s)
Productos Biológicos/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Animales , Autofagia/efectos de los fármacos , Productos Biológicos/uso terapéutico , Manejo de la Enfermedad , Humanos
8.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34203048

RESUMEN

Type 2 diabetes mellitus (T2DM) is an increasing global public health problem, and its prevalence is expected to rise in coming decades. Dipeptidyl peptidase-4 (DPP-4) is a therapeutic target for the management of T2DM, and its inhibitors prevent the degradation of glucose-dependent insulinotropic peptide and glucagon-like peptide 1, and thus, maintain their endogenous levels and lower blood glucose levels. Various medicinal plant extracts and isolated bioactive compounds exhibit DPP-4 inhibitory activity. In this review, we discussed different natural sources that have been shown to have anti-diabetic efficacy with a particular emphasis on DPP-4 inhibition. Furthermore, the effect of DPP-4 inhibition on pancreatic beta cell function, skeletal muscle function, and the glucose-lowering mechanisms were also discussed. We believe that scientists looking for novel compounds with therapeutic promise against T2DM will be able to develop antidiabetic drugs using these natural sources.

9.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467209

RESUMEN

Skeletal muscle is the most abundant tissue and constitutes about 40% of total body mass. Herein, we report that crude water extract (CWE) of G. uralensis enhanced myoblast proliferation and differentiation. Pretreatment of mice with the CWE of G. uralensis prior to cardiotoxin-induced muscle injury was found to enhance muscle regeneration by inducing myogenic gene expression and downregulating myostatin expression. Furthermore, this extract reduced nitrotyrosine protein levels and atrophy-related gene expression. Of the five different fractions of the CWE of G. uralensis obtained, the ethyl acetate (EtOAc) fraction more significantly enhanced myoblast proliferation and differentiation than the other fractions. Ten bioactive compounds were isolated from the EtOAc fraction and characterized by GC-MS and NMR. Of these compounds (4-hydroxybenzoic acid, liquiritigenin, (R)-(-)-vestitol, isoliquiritigenin, medicarpin, tetrahydroxymethoxychalcone, licochalcone B, liquiritin, liquiritinapioside, and ononin), liquiritigenin, tetrahydroxymethoxychalcone, and licochalcone B were found to enhance myoblast proliferation and differentiation, and myofiber diameters in injured muscles were wider with the liquiritigenin than the non-treated one. Computational analysis showed these compounds are non-toxic and possess good drug-likeness properties. These findings suggest that G. uralensis-extracted components might be useful therapeutic agents for the management of muscle-associated diseases.


Asunto(s)
Glycyrrhiza uralensis/química , Atrofia Muscular/tratamiento farmacológico , Extractos Vegetales/química , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Chalconas/química , Chalconas/farmacología , Chalconas/uso terapéutico , Flavanonas/química , Flavanonas/farmacología , Flavanonas/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Miostatina/genética , Miostatina/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Tirosina/análogos & derivados , Tirosina/metabolismo
10.
Int J Mol Sci ; 20(10)2019 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-31109079

RESUMEN

Multiple drug-resistant bacteria are a severe and growing public health concern. Because relatively few antibiotics have been approved over recent years and because of the inability of existing antibiotics to combat bacterial infections fully, demand for unconventional biocides is intense. Metallic nanoparticles (NPs) offer a novel potential means of fighting bacteria. Although metallic NPs exert their effects through membrane protein damage, superoxide radicals and the generation of ions that interfere with the cell granules leading to the formation of condensed particles, their antimicrobial potential, and mechanisms of action are still debated. This article discusses the action of metallic NPs as antibacterial agents, their mechanism of action, and their effect on bacterial drug resistance. Based on encouraging data about the antibacterial effects of NP/antibiotic combinations, we propose that this concept be thoroughly researched to identify means of combating drug-resistant bacteria.


Asunto(s)
Antiinfecciosos/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Nanopartículas del Metal , Antiinfecciosos/efectos adversos , Antiinfecciosos/química , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Nanopartículas del Metal/efectos adversos , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Óxido Nítrico/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Óxido de Zinc/química
11.
Int J Nanomedicine ; 13: 7789-7799, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30538459

RESUMEN

BACKGROUND: Biological synthesis of nanomaterials possesses unprecedented potential in the production of nanomaterials due to their ability to produce nanomaterials with improved biocompatibility in addition to eco-friendly synthetic procedures. METHODS: This article reports the isolation of an air-borne fungus from the campus of Integral University, Lucknow, with an exceptional ability to withstand very high concentrations of silver salt. The fungus was found to produce pentagonal silver nanoparticles (AgPgNps) when silver ions were reduced from silver nitrate. Molecular analysis and biochemical characterization techniques based on 18-seconds rRNA identified the fungus to belong to the Aspergillus sp. with the NCBI accession no KF913249. Material characterization techniques including ultraviolet (UV)-visible spectroscopy, transmission electron microscopy, and zeta potential analysis were used to satisfactorily characterize the as-synthesized AgPgNps. RESULTS: The AgPgNps synthesized by the fungus Aspergillus sp. exhibit an absorption that is maximum centered at about 416 nm, with a standard particle size of 23.22±2 nm. These AgPgNps exhibited broad-spectrum antimicrobial activities against an array of bacterial pathogens with remarkable minimum inhibitory concentration (MIC50) values: Staphylococcus aureus (ATCC 25923) - 9.230 µg/mL, Bacillus sp. (ATCC 14593) - 12.781 µg/mL, Escherichia coli (ATCC 25922) - 5.063 µg/mL, and Klebsiella pneumoniae (ATCC 13883) - 5.426 µg/mL. In vitro cytotoxicity analysis of biosynthesized AgPgNps showed a dose-response activity against human cervical cancer cell line (HeLa) and adenocarcinoma cells (A549) with MIC50 values of 0.038 µg/mL and 0.044 µg/mL, respectively. CONCLUSION: These findings are very crucial to evaluate the biosynthetic process for the synthesis of nanoparticles (NPs) with unique properties. These NPs may find potential applications in sensing, medicine, and antimicrobial and anticancer therapies.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas del Metal/química , Plata/farmacología , Células A549 , Aspergillus/genética , Aspergillus/aislamiento & purificación , Bacterias/efectos de los fármacos , Secuencia de Bases , Células HeLa , Humanos , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Osteoblastos/efectos de los fármacos , Tamaño de la Partícula , Filogenia , Especies Reactivas de Oxígeno/metabolismo
12.
Curr Pharm Des ; 23(11): 1667-1676, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27834124

RESUMEN

Diabetes has increased at an unprecedented rate and is fast emerging as a global threat worldwide. The focus on pharmacological studies pertaining to diabetes has seen a remarkable shift from conventional medicines to therapeutics employing bioactive phytomolecules from natural sources. The prospective effectiveness of natural products together with their low cost and minimal side effects has revolutionized the entire concept of drug discovery and management programs. One such beneficial herb is Gymnema sylvestre, possessing remarkable hypoglycemic properties and forms the platform of diabetes therapeutics in the traditional system of medication. The present article discusses the significance of G. sylvestre in diabetes management, the herbal-formulations from the herb together with its standardization and clinical trials on animal models, and why Peroxisome Proliferator Activated Receptor gamma (PPARγ) may serve as a prospective molecular target for Gymnemic acid analogs. Such studies would define the molecular basis of bioactive molecules which would aid in the development of natural product based therapeutics in the treatment of diabetes.


Asunto(s)
Productos Biológicos/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Gymnema sylvestre/química , Hipoglucemiantes/uso terapéutico , Extractos Vegetales/uso terapéutico , Animales , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Conformación Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
13.
Biomed Res Int ; 2015: 379817, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26064904

RESUMEN

Caspase-3 has been identified as a key mediator of neuronal apoptosis. The present study identifies caspase-3 as a common player involved in the regulation of multineurodegenerative disorders, namely, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The protein interaction network prepared using STRING database provides a strong evidence of caspase-3 interactions with the metabolic cascade of the said multineurodegenerative disorders, thus characterizing it as a potential therapeutic target for multiple neurodegenerative disorders. In silico molecular docking of selected nonpeptidyl natural compounds against caspase-3 exposed potent leads against this common therapeutic target. Rosmarinic acid and curcumin proved to be the most promising ligands (leads) mimicking the inhibitory action of peptidyl inhibitors with the highest Gold fitness scores 57.38 and 53.51, respectively. These results were in close agreement with the fitness score predicted using X-score, a consensus based scoring function to calculate the binding affinity. Nonpeptidyl inhibitors of caspase-3 identified in the present study expeditiously mimic the inhibitory action of the previously identified peptidyl inhibitors. Since, nonpeptidyl inhibitors are preferred drug candidates, hence, discovery of natural compounds as nonpeptidyl inhibitors is a significant transition towards feasible drug development for neurodegenerative disorders.


Asunto(s)
Caspasa 3/química , Inhibidores de Caspasas/química , Cinamatos/química , Curcumina/química , Depsidos/química , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Cinamatos/uso terapéutico , Curcumina/uso terapéutico , Depsidos/uso terapéutico , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/patología , Ligandos , Simulación del Acoplamiento Molecular , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Ácido Rosmarínico
14.
Bioinformation ; 10(4): 191-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24966519

RESUMEN

Neurodegenerative disorders are often associated with excessive neuronal apoptosis. It is well known that apoptosis is regulated by some intracellular proteases, such as, Caspases (cysteine-dependent, aspartate-specific proteases). In fact, Caspase-8 which is an initiator caspase, has been identified as a key mediator of neuronal apoptosis. In addition, Caspase-8 is found to be coupled with the regulation of various neurodegenerative disorders including Alzheimer׳s disease (AD), Parkinson׳s disease (PD), Huntington׳s Diseases (HD) and Dentatorubral Pallidoluysian Atrophy (DRPLA). Caspase-8 inhibition may provide an effective means of treatment for multiple neurodegenerative disorders. Therefore, the present study describes the molecular interaction of some selected natural compounds with known anti neurodegenerative properties with Caspase-8. Docking between Caspase-8 and each of these compounds (separately) was performed using 'Autodock4.2'. Out of all the selected compounds, rosmarinic acid and curcumin proved to be the most potent inhibitors of Caspase-8 with binding energy (ΔG) of -7.10 Kcal/mol and -7.08 Kcal/mol, respectively. However, further in vitro and in vivo studies are needed to validate the anti-neurodegenerative potential of these compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA