Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Arch Biochem Biophys ; 753: 109911, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280562

RESUMEN

Diabetes is a metabolic illness that increases protein glycosylation in hyperglycemic conditions, which can have an impact on almost every organ system in the body. The role of vitamin D in the etiology of diabetes under RAGE (receptor for advanced glycation end products) stress has recently received some attention on a global scale. Vitamin D's other skeletal benefits have generated a great deal of research. Vitamin D's function in the development of type 1 and type 2 diabetes is supported by the discovery of 1,25 (OH)2D3 and 1-Alpha-Hydroylase expression in immune cells, pancreatic beta cells, and several other organs besides the bone system. A lower HBA1c level, metabolic syndrome, and diabetes mellitus all seems to be associated with vitamin D insufficiency. Most of the cross-sectional and prospective observational studies that were used to gather human evidence revealed an inverse relationship between vitamin D level and the prevalence or incidence of elevated HBA1c in type 2 diabetes. Several trials have reported on the impact of vitamin D supplementation for glycemia or incidence of type 2 diabetes, with varying degrees of success. The current paper examines the available data for a relationship between vitamin D supplementation and HBA1c level in diabetes and discusses the biological plausibility of such a relationship.


Asunto(s)
Diabetes Mellitus Tipo 2 , Deficiencia de Vitamina D , Humanos , Hemoglobina Glucada , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/epidemiología , Estudios Transversales , Vitamina D/uso terapéutico , Vitaminas , Suplementos Dietéticos , Estudios Observacionales como Asunto
2.
Front Oncol ; 12: 998346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147917

RESUMEN

Anthocyanidins are the most abundant polyphenols in pomegranate juice. This class of molecules includes Delphinidin (Del), Cyanidin (Cya), and Pelargonidin (Pel). Using prostate, breast and pancreatic cancer cell lines PC3, MDA-MB-231, BxPC-3 and MiaPaCa-2, we show that anthocyanidins inhibit cell proliferation (measured by MTT assay) and induce apoptosis like cell death (measured by DNA/Histone ELISA). Copper chelator neocuproine and reactive oxygen species scavengers (thiourea for hydroxyl radical and superoxide dismutase for superoxide anion) significantly inhibit this reaction thus demonstrating that intracellular copper reacts with anthocyanidins in cancer cells to cause DNA damage via ROS generation. We further show that copper-supplemented media sensitizes normal breast epithelial cells (MCF-10A) to Del-mediated growth inhibition as determined by decreased cell proliferation. Copper supplementation results in increased expression of copper transporters Ctr1 and ATP7A in MCF-10A cells, which is attenuated by the addition of Del in the medium. We propose that the copper mediated, ROS-induced mechanism of selective cell death of cancer cells may in part explain the anticancer effects of anthocyanidins.

3.
Cell Biochem Funct ; 40(7): 784-796, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36128730

RESUMEN

Biosynthetic procedure is one of the best alternatives, inexpensive and ecologically sound for the synthesis of titanium dioxide (TiO2 ) nanoparticles using a methanolic extract of medicinal plant. The main prospect of this study was to investigate the antiglycation activity of the TiO2 nanoparticles (TNP) prepared by ethanolic leaf extract of the Coleus scutellarioides. In this study, biosynthesized TNP characterized with UV-Visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscope. These TNP were further investigated with respect to their antiglycation property and it was checked in the mixture of d-ribose glycated bovine serum albumin (BSA) by measuring ketoamine, carbonyl content, Advanced glycation end products (AGEs) and aggregation of protein instigated by glycation process. The inhibitory effect of TNP to restore the structure of BSA in presence of d-ribose were also characterize by biophysical techniques mentioned above. Therefore, the findings of this study suggest repurposing of TNP for its antiglycation property that could be helpful in prevention of glycation instigated AGEs formation and structural loss of proteins.


Asunto(s)
Nanopartículas , Albúmina Sérica Bovina , Productos Finales de Glicación Avanzada/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ribosa/química , Ribosa/metabolismo , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Titanio
4.
Biomed Res Int ; 2021: 7240046, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746307

RESUMEN

The dysregulation of glucose metabolism that includes the modification of biomolecules with the help of glycation reaction results in the formation of advanced glycation end products (AGEs). The formation of AGEs may activate receptors for advanced glycation end products which induce intracellular signaling, ultimately enhancing oxidative stress, a well-known contributor to type 2 diabetes mellitus. In addition, AGEs are possible therapeutic targets for the treatment of type 2 diabetes mellitus and its complications. This review article highlights the antioxidant, anti-inflammatory, and antidiabetic properties of the Nymphaea species, and the screening of such aquatic plants for antiglycation activity may provide a safer alternative to the adverse effects related to glucotoxicity. Since oxidation and glycation are relatively similar to each other, therefore, there is a possibility that the Nymphaea species may also have antiglycating properties because of its powerful antioxidant properties. Herbal products and their derivatives are the preeminent resources showing prominent medicinal properties for most of the chronic diseases including type 2 diabetes mellitus. Among these, the Nymphaea species has also shown elevated activity in scavenging free radicals. This species has a load of phytochemical constituents which shows various therapeutic and nutritional value including anti-inflammatory and antioxidant profiles. To the best of our knowledge, this is the first article highlighting the possibility of an antiglycation value of the Nymphaea species by inhibiting AGEs in mediation of type 2 diabetes mellitus. We hope that in the next few years, the clinical and therapeutic potential may be explored and highlight a better perspective on the Nymphaea species in the inhibition of AGEs and its associated diseases such as type 2 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Glicosilación/efectos de los fármacos , Nymphaea/metabolismo , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Diabetes Mellitus Tipo 2/fisiopatología , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Hipoglucemiantes/farmacología , Oxidación-Reducción , Estrés Oxidativo/fisiología , Fitoquímicos/uso terapéutico , Extractos Vegetales/farmacología
5.
Curr Protein Pept Sci ; 21(9): 899-915, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32039678

RESUMEN

The non-enzymatic interaction of sugar and protein resulting in the formation of advanced glycation end products responsible for cell signaling alterations ultimately leads to the human chronic disorders such as diabetes mellitus, cardiovascular diseases, cancer, etc. Studies suggest that AGEs upon interaction with receptors for advanced glycation end products (RAGE) result in the production of pro-inflammatory molecules and free radicals that exert altered gene expression effect. To date, many studies unveiled the potent role of synthetic and natural agents in inhibiting the glycation reaction at a lesser or greater extent. This review focuses on the hazards of glycation reaction and its inhibition by natural antioxidants, including polyphenols.


Asunto(s)
Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Polifenoles/uso terapéutico , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Desoxiglucosa/análogos & derivados , Desoxiglucosa/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica , Productos Finales de Glicación Avanzada/genética , Productos Finales de Glicación Avanzada/metabolismo , Glioxal/metabolismo , Humanos , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Estrés Oxidativo , Extractos Vegetales/química , Carbonilación Proteica , Piruvaldehído/metabolismo , Transducción de Señal
6.
Sci Rep ; 9(1): 13826, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554850

RESUMEN

Enzymatic gold nanoparticles (B-GNPs) have been synthesized using a natural anticancer agent bromelain (a cysteine protease) and these nanoparticles were used to bioconjugate Cisplatin (highly effective against osteosarcoma and lung cancer). Cisplatin bioconjugated bromelain encapsulated gold nanoparticles (B-C-GNPs) were found profoundly potent against same cancers at much lower concentration with minimum side effects due to the synergistic effect of bromelain. The B-C-GNPs have been observed to inhibit the proliferation of osteosarcoma cell lines Saos-2 and MG-63 with IC50 estimation of 4.51 µg/ml and 3.21 µg/ml, respectively, and against small lung cancer cell line A-549 with IC50 2.5 µg/ml which is lower than IC50 of cisplatin against same cell lines. The B-GNPs/B-C-GNPs were characterized by TEM, UV-Visible spectroscopy, Zeta potential and DLS to confirm the production, purity, crystalline nature, stability of nanoemulsion, size and shape distribution. The change in 2D and 3D conformation of bromelain after encapsulation was studied by Circular Dichroism and Fluorometry, respectively. It was found that after encapsulation, a 19.4% loss in secondary structure was observed, but tertiary structure was not altered significantly and this loss improved the anticancer activity. The confirmation of bioconjugation of cisplatin with B-GNPs was done by UV-Visible spectroscopy, TEM, FTIR, 2D 1H NMR DOSY and ICP-MS. Further, it was found that almost ~4 cisplatin molecules bound with each B-GNPs nanoparticle.


Asunto(s)
Neoplasias Óseas/metabolismo , Bromelaínas/farmacología , Cisplatino/farmacología , Oro/química , Neoplasias Pulmonares/metabolismo , Osteosarcoma/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Células A549 , Neoplasias Óseas/tratamiento farmacológico , Bromelaínas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/química , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Humanos , Concentración 50 Inhibidora , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas del Metal , Modelos Moleculares , Osteosarcoma/tratamiento farmacológico , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico
7.
Mol Neurobiol ; 55(9): 7438-7452, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29423819

RESUMEN

Advanced glycation end products (AGEs) are implicated in several central nervous system (CNS) pathologies including Alzheimer and Parkinson's diseases. In the face-off of AGE menace, we have attempted to investigate the zinc oxide nanoparticle (ZnONP) role in inhibition of AGE formation. Synthesized ZnONPs were used to investigate the inhibitory effects on AGE formation. The inhibitory effects of ZnONPs on AGE formation were determined by biophysical immunological and biochemical techniques. The results showed that ZnONP is a potential anti-glycating agent inhibiting AGE formation as well as protecting the protein structure from change. Therefore, our findings suggest ZnONPs may be used as a therapeutic in resolving the AGE role in CNS-related complications.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Nanopartículas/química , Enfermedades Neurodegenerativas/patología , Estrés Oxidativo/efectos de los fármacos , Óxido de Zinc/farmacología , Aloe/química , Humanos , Nanopartículas/ultraestructura , Oxidación-Reducción , Extractos Vegetales/química , Hojas de la Planta/química , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Difracción de Rayos X
8.
Cancer Lett ; 420: 129-145, 2018 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-29408515

RESUMEN

The diterpene lactone andrographolide, isolated from Andrographis paniculata, has been proven to possess several important protective biological activities, including antioxidant, anti-inflammatory, immunomodulatory, antiseptic, antimicrobial, cytotoxic, hypolipidemic, cardioprotective, hepatoprotective, and neuroprotective effects. In addition, it has been reported to play a therapeutic role in the treatment of major human diseases, such as Parkinson's disease, rheumatoid arthritis, and colitis. This systematic review aims to highlight andrographolide as a promising agent in cancer treatment. To this purpose, a number of databases were used to search for the cytotoxic/anticancer effects of andrographolide in pre-clinical and clinical studies. Among 1703 identified literature articles, 139 were included in this review; 109 were investigated as non-clinical, whereas 24, 3, and 3 were pre-clinical, clinical, and non-pre-clinical trials, respectively. Among the model systems, cultured cell lines appeared as the most frequently (79.14%) used, followed by in vivo models using rodents, among others. Furthermore, andrographolide was found to exert cytotoxic/anticancer effects on almost all types of cell lines with the underlying mechanisms involving oxidative stress, cell cycle arrest, anti-inflammatory and immune system mediated effects, apoptosis, necrosis, autophagy, inhibition of cell adhesion, proliferation, migration, invasion, anti-angiogenic activity, and other miscellaneous actions. After careful consideration of the relevant evidence, we suggest that andrographolide can be one of the potential agents in the treatment of cancer in the near future.


Asunto(s)
Andrographis/química , Antineoplásicos Fitogénicos/uso terapéutico , Diterpenos/farmacología , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diterpenos/química , Humanos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología
9.
Curr Drug Metab ; 16(8): 685-704, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26264204

RESUMEN

Importance of magnetic nanoparticles in daily life including biomedical applications in near future cannot be overlooked. This review focuses on the properties of magnetic nanoparticles (MNPs), various approaches for their synthesis, and their biomedical applications. First part of this review focuses on the classes, physical properties, and characteristics of MNPs. The second part sheds light on strategies developed for the synthesis of MNPs, with special attention given to biological, physical, and chemical approaches as well as recent modifications in the preparation of monodispersed samples. Furthermore, this review deals with the biomedical applications of MNPs, which includes applications in targeted drug delivery, diagnostics, gene therapy, hyperthermia and advantages in the field of medicine.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas del Metal , Animales , Antiinfecciosos/administración & dosificación , Antiinfecciosos/uso terapéutico , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Artritis/tratamiento farmacológico , Medios de Contraste/administración & dosificación , Medios de Contraste/uso terapéutico , Terapia Genética , Humanos , Hipertermia Inducida , Fenómenos Magnéticos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Trasplante de Células Madre
10.
Lipids Health Dis ; 14: 15, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25884722

RESUMEN

BACKGROUND: The current perspective for the search of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor has been shifted towards a natural agent also having antioxidant property. Thus, this study was intended to isolate and identify the bioactive compounds from methanolic extract of Ficus virens bark (FVBM) and to evaluate their antioxidant, HMG-CoA reductase inhibitory and hypolipidemic activity. METHODS: Bioactivity guided fractionation and isolation of bioactive compound from FVBM extract has been done to isolate and characterize the potent HMG-CoA reductase (HMGR) inhibitor with antioxidant activity by using repeated extensive column chromatography followed by spectroscopic methods, including Infrared (IR), 1H & 13C nuclear magnetic resonance (NMR) and Mass spectrum analysis. The in vitro HMGR inhibition and enzyme kinetic assay was determined using HMG-CoA as substrate. In addition, antioxidant activity of the new isolated compound, was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and FRAP value. In-silico molecular informatics of HMGR enzyme type inhibition and pharmacokinetics data of the new compound was further evaluated through molecular docking and ADME-T studies. Further, in-vivo hypolipidemic property of FVBM extract and newly isolated compound was also analyzed in triton-WR 1339 induced rats. RESULTS: Thereby, we report the discovery of n-Octadecanyl-O-α-D-glucopyranosyl(6'→1″)-O-α-D-glucopyranoside (F18) as a novel HMG-CoA reductase inhibitor with strong antioxidant property. This inhibitor exhibited not only higher free radical scavenging activity but also marked HMG-CoA reductase inhibitory activity with an IC50 value of 84±2.8 ng/ml. This inhibitory activity concurred with kinetic study that showed inhibition constant (K i) of 84 ng/ml via an uncompetitive mode of inhibition. The inhibition was also corroborated by molecular docking analysis and in silico pharmacokinetics data. The in vivo study revealed that administration of FVBM extract (at higher dose, 100 mg/rat) and the inhibitor (1 mg/rat) to Triton WR-1339-induced hyperlipidemic rats significantly ameliorated the altered levels of plasma lipids and lipoproteins including hepatic HMG-CoA reductase activity; this effect was comparable to the effect of standard drug atorvastatin. CONCLUSIONS: The in vitro, in silico and in vivo results clearly demonstrated the antioxidant potential and therapeutic efficacy of the inhibitor as an alternate drug against hyperlipidemia.


Asunto(s)
Disacáridos/farmacología , Ficus/química , Glucolípidos/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hipolipemiantes/farmacología , Extractos Vegetales/farmacología , Animales , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Fraccionamiento Químico , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Disacáridos/aislamiento & purificación , Glucolípidos/aislamiento & purificación , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/aislamiento & purificación , Hiperlipidemias/tratamiento farmacológico , Hipolipemiantes/aislamiento & purificación , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Corteza de la Planta/química , Extractos Vegetales/aislamiento & purificación , Ratas , Ratas Sprague-Dawley , Triglicéridos/sangre
11.
Biomed Res Int ; 2014: 762620, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24883325

RESUMEN

Hypercholesterolemia-induced oxidative stress has been strongly implicated in the pathogenesis of atherosclerosis, which is one of the major causes of mortality worldwide. The current work, for the first time, accounts the antioxidant, genoprotective, antilipoperoxidative, and HMG-CoA reductase (EC 1.1.1.34) inhibitory properties of traditional medicinal plant, Ficus palmata Forsk. Our result showed that among sequentially extracted fractions of Ficus palmata Forsk, FPBA (F. palmata bark aqueous extract) and FPLM (F. palmata leaves methanolic extract) extracts have higher phenolic content and also exhibited significantly more radical scavenging (DPPH and Superoxide) and antioxidant (FRAP) capacity. Moreover, FPBA extract also exhibited significantly higher inhibition of lipid peroxidation assay. Additionally, results showed almost complete and partial protection of oxidatively damaged DNA by these plant extracts when compared to mannitol. Furthermore, our results showed that FPBA extract (IC50 = 9.1 ± 0.61 µg/mL) exhibited noteworthy inhibition of HMG-CoA reductase activity as compared to other extracts, which might suggest its role as cardioprotective agent. In conclusion, results showed that FPBA extract not only possess significant antioxidant and genoprotective property but also is able to attenuate the enzymatic activity of HMG-CoA reductase, which might suggest its role in combating various oxidative stress-related diseases, including atherosclerosis.


Asunto(s)
Antioxidantes/metabolismo , Aterosclerosis/enzimología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Estrés Oxidativo , Extractos Vegetales/administración & dosificación , Acilcoenzima A/metabolismo , Aterosclerosis/patología , Ficus/química , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hidroximetilglutaril-CoA-Reductasas NADP-Dependientes/química , Hidroximetilglutaril-CoA-Reductasas NADP-Dependientes/metabolismo , Técnicas In Vitro , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Extractos Vegetales/química , Hojas de la Planta/enzimología
12.
Phytother Res ; 28(6): 899-908, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24151056

RESUMEN

The present study is initially intended to evaluate antioxidant and ß-hydroxy-ß-methylglutaryl-CoA reductase (HMGR) inhibitory property of Ficus virens Ait., first by in vitro analyses followed by a corroboratory molecular informatics study. Our results show that of all the sequentially extracted fraction of F. virens bark and leaves extract, F. virens bark methanol extract exhibits strong radical scavenging, antioxidant and oxidative DNA damage protective activity, which is well correlated with its total phenolic content. In addition, F. virens bark methanol extract, which is non-cytotoxic, significantly and non-covalently inhibit the HMGR activity (IC50 = 3.45 ± 0.45 µg/ml) in comparison with other extracts. The mechanistic aspect of this inhibition activity is authenticated by molecular docking study of bioactive compounds as revealed from gas chromatography-mass spectrometry data, with HMGR. The analysis for the first time indicates that quinic acid (ΔG: -8.11 kcal/mol) and paravastatin (ΔG: -8.22 kcal/mol) exhibit almost same binding energy, while other compounds also showed good binding energy, suggesting that quinic acid alone or in combination with other major bioactive compound is probably responsible for HMGR inhibitory property of the extract and plausibly can be used in in vivo system for the management, prevention, and alleviation of hypercholesterolemia as well as hypercholesterolemia-induced oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Ficus/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Extractos Vegetales/farmacología , Células 3T3-L1 , Animales , Antioxidantes/química , Daño del ADN/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Hipercolesterolemia , Ratones , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas/metabolismo , Corteza de la Planta/química , Extractos Vegetales/química , Ácido Quínico/química
13.
Biomed Res Int ; 2013: 729393, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23957001

RESUMEN

The present study on Phyllanthus virgatus, known traditionally for its remedial potential, for the first time provides descriptions of the antioxidant and inhibition of α -amylase enzyme activity first by in vitro analyses, followed by a confirmatory in silico study to create a stronger biochemical rationale. Our results illustrated that P. virgatus methanol extract exhibited strong antioxidant and oxidative DNA damage protective activity than other extracts, which was well correlated with its total phenolic content. In addition, P. virgatus methanol extract strongly inhibited the α -amylase activity (IC50 33.20 ± 0.556 µ g/mL), in a noncompetitive manner, than acarbose (IC50 76.88 ± 0.277 µ g/mL), which showed competitive inhibition. Moreover, this extract stimulated the glucose uptake activity in 3T3-L1 cells and also showed a good correlation between antioxidant and α -amylase activities. The molecular docking studies of the major bioactive compounds (9,12-octadecadienoic acid, asarone, 11-octadecenoic acid, and acrylic acid) revealed via GC-MS analysis from this extract mechanistically suggested that the inhibitory property may be due to the synergistic effect of these bioactive compounds. These results provide substantial basis for the future use of P. virgatus methanol extract and its bioactive compound in in vivo system for the treatment and management of diabetes as well as in the related condition of oxidative stress.


Asunto(s)
Daño del ADN/efectos de los fármacos , Phyllanthus/química , Extractos Vegetales/farmacología , alfa-Amilasas/química , Acrilatos/química , Derivados de Alilbenceno , Anisoles/química , Antioxidantes/química , Antioxidantes/farmacología , Simulación por Computador , Ácido Linoleico/química , Simulación del Acoplamiento Molecular , Ácidos Oléicos/química , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , alfa-Amilasas/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA