Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharmacol ; 96(4): 515-525, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31427400

RESUMEN

ORKAMBI, a combination of the corrector, lumacaftor, and the potentiator, ivacaftor, partially rescues the defective processing and anion channel activity conferred by the major cystic fibrosis-causing mutation, F508del, in in vitro studies. Clinically, the improvement in lung function after ORKAMBI treatment is modest and variable, prompting the search for complementary interventions. As our previous work identified a positive effect of arginine-dependent nitric oxide signaling on residual F508del-Cftr function in murine intestinal epithelium, we were prompted to determine whether strategies aimed at increasing arginine would enhance F508del-cystic fibrosis transmembrane conductance regulator (CFTR) channel activity in patient-derived airway epithelia. Now, we show that the addition of arginine together with inhibition of intracellular arginase activity increased cytosolic nitric oxide and enhanced the rescue effect of ORKAMBI on F508del-CFTR-mediated chloride conductance at the cell surface of patient-derived bronchial and nasal epithelial cultures. Interestingly, arginine addition plus arginase inhibition also enhanced ORKAMBI-mediated increases in ciliary beat frequency and mucociliary movement, two in vitro CF phenotypes that are downstream of the channel defect. This work suggests that strategies to manipulate the arginine-nitric oxide pathway in combination with CFTR modulators may lead to improved clinical outcomes. SIGNIFICANCE STATEMENT: These proof-of-concept studies highlight the potential to boost the response to cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulators, lumacaftor and ivacaftor, in patient-derived airway tissues expressing the major CF-causing mutant, F508del-CFTR, by enhancing other regulatory pathways. In this case, we observed enhancement of pharmacologically rescued F508del-CFTR by arginine-dependent, nitric oxide signaling through inhibition of endogenous arginase activity.


Asunto(s)
Aminofenoles/farmacología , Aminopiridinas/farmacología , Arginasa/antagonistas & inhibidores , Arginina/metabolismo , Benzodioxoles/farmacología , Fibrosis Quística/metabolismo , Óxido Nítrico/metabolismo , Quinolonas/farmacología , Animales , Bronquios/citología , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Células Cultivadas , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Citosol/metabolismo , Combinación de Medicamentos , Humanos , Mucosa Intestinal/metabolismo , Ratones , Mutación , Nariz/citología , Nariz/efectos de los fármacos
2.
mBio ; 8(6)2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259090

RESUMEN

Cystic fibrosis (CF) is caused by mutations in the CFTR gene and is associated with progressive and ultimately fatal infectious lung disease. There can be considerable variability in disease severity among individuals with the same CFTR mutations, and recent genome-wide association studies have identified secondary genetic factors that contribute to this. One of these modifier genes is SLC6A14, which encodes an amino acid transporter. Importantly, variants of this gene have been associated with age at first acquisition of Pseudomonas aeruginosa In this study, we aimed to determine the function of SLC6A14 in airway epithelia and how it might affect colonization by P. aeruginosa We show that SLC6A14 is expressed in respiratory epithelial cells and transports l-arginine out of the airway surface liquid (ASL). Exposure of airway epithelia to flagellin from P. aeruginosa led to upregulation of SLC6A14 expression and increased SLC6A14-dependent uptake of l-arginine from the ASL. In support of the hypothesis that l-arginine affects P. aeruginosa attachment, we showed that l-arginine supplementation promoted P. aeruginosa attachment to an abiotic surface in a dose-dependent manner. In a coculture model, we found that inhibition of SLC6A14-dependent l-arginine transport enhanced P. aeruginosa attachment. In Slc6a14-/y (knockout) mice, P. aeruginosa attachment to lung tissue was also significantly enhanced. Together, these findings suggest that SLC6A14 activity plays a role in the modification of the initial stages of airway infection by altering the level of l-arginine in the ASL, which in turn affects the attachment of P. aeruginosaIMPORTANCE CF patients with shared CFTR gene mutations show significant variability in their clinical presentation of infectious lung disease. Genome-wide association studies have been used to identify secondary genetic factors that may explain the variable susceptibility to infection by opportunistic pathogens, including P. aeruginosa, the leading cause of pathogen-induced lung damage in nonpediatric CF patients. Once identified and characterized, these secondary genetic modifiers may allow for the development of personalized medicine for patients and ultimately the extension of life. In this study, we interrogated the biological role of one of these modifiers, SLC6A14, and showed that it contributes to host defense by depleting extracellular arginine (an attachment-promoting metabolite for P. aeruginosa) from the airway surface liquid.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Adhesión Bacteriana , Células Epiteliales/microbiología , Pseudomonas aeruginosa/fisiología , Sistemas de Transporte de Aminoácidos/deficiencia , Animales , Arginina/metabolismo , Fibrosis Quística/complicaciones , Humanos , Ratones Noqueados , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia , Infecciones por Pseudomonas/fisiopatología , Pseudomonas aeruginosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA