Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mini Rev Med Chem ; 23(5): 514-529, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36029081

RESUMEN

The cell cycle has the capacity to safeguard the cell's DNA from damage. Thus, cell cycle arrest can allow tumor cells to investigate their own DNA repair processes. Cancer cells become extremely reliant on G1-phase cyclin-dependent kinases due to mutated oncogenes and deactivated tumor suppressors, producing replication stress and DNA damage during the S phase and destroying checkpoints that facilitate progression through the S/G2/M phase. DNA damage checkpoints activate DNA repair pathways to prevent cell proliferation, which occurs when the genome is damaged. However, research on how cells recommence division after a DNA lesion-induced arrest is insufficient which is merely the result of cancer cells' susceptibility to cell cycle arrest. For example, defects in the G1 arrest checkpoint may cause a cancer cell to proliferate more aggressively, and attempts to fix these complications may cause the cell to grow more slowly and eventually die. Defects in the G2-M arrest checkpoint may enable a damaged cell to enter mitosis and suffer apoptosis, and attempts to boost the effectiveness of chemotherapy may increase its cytotoxicity. Alternatively, attempts to promote G2-M arrest have also been linked to increased apoptosis in the laboratory. Furthermore, variables, such as hyperthermia, contact inhibition, nucleotide shortage, mitotic spindle damage, and resting phase effects, and DNA replication inhibitors add together to halt the cell cycle. In this review, we look at how nucleotide excision repair, MMR, and other variables, such as DNA replication inhibitors, hyperthermia, and contact inhibition, contribute to the outlined processes and functional capacities that cause cell cycle arrest.


Asunto(s)
Apoptosis , Hipertermia Inducida , Inhibición de Contacto , Puntos de Control de la Fase G2 del Ciclo Celular , Línea Celular Tumoral , Ciclo Celular , División Celular , Reparación del ADN , Daño del ADN , ADN
2.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555406

RESUMEN

Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Neoplasias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transducción de Señal , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Inflamación/tratamiento farmacológico
3.
Artículo en Inglés | MEDLINE | ID: mdl-31198432

RESUMEN

Artemia salina, crustaceans of class Branchiopoda and order Anostraca, are living and reproducing only in highly saline natural lakes and in other reservoirs where sea water is evaporated to produce salt. Artemia salina eggs can be purchased from pet stores, where they are sold as tropical fish food and a ready source for hatching shrimp. In the current study, methanolic crude extracts and various fractions of Artemia salina eggs extracted in other solvents were tested for effects on cell viability of human colorectal cancer cells (HCT116) and melanoma cells (B16F10) using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. A methanolic crude extract of eggs was obtained by cold maceration, followed by fractionation to obtain hexane, chloroform, ethyl acetate, n-butanol, and aqueous fractions. The methanolic crude extract decreased cell viability of HCT-116 and B16F10 cell lines at higher concentrations. The other fractions were evaluated using a cell viability assay, and chloroform and hexane showed the highest activity at significantly lower concentrations than did the methanolic fraction. Full scan profiles of the methanolic crude extract and the chloroform and hexane fractions were obtained by gas chromatography mass spectrometry (GC-MS), and the resultant compounds were identified by comparing their spectral data to those available in spectral matching libraries. ROS generation assay, flow cytometry, and western blot analysis provided supporting evidence that the hexane and chloroform fractions induced cell death in HCT116 and B16-F10 cell lines. All fractions were further tested for antibacterial activity against Pseudomonas aeruginosa, among which the hexane fraction showed the highest zone of inhibition on LB nutrient agar plates. This study demonstrated promising anticancer and antibacterial effects of Artemia salina egg extracts. Our results suggest that pure bioactive compounds obtained from Artemia salina eggs can provide new insights into the mechanisms of colon and skin cancer, as well as Pseudomonas aeruginosa inhibition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA