Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemosphere ; 306: 135527, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35780994

RESUMEN

Membrane technology has rapidly gained popularity in wastewater treatment due to its cost-effectiveness, environmentally friendly tools, and elevated productivity. Although membrane performance in wastewater treatment has been reviewed in several past studies, the key techniques for improving membrane performance, as well as their challenges, and solutions associated with the membrane process, were not sufficiently highlighted in those studies. Also, very few studies have addressed hybrid techniques to improve membrane performance. The present review aims to fill those gaps and achieve public health benefits through safe water processing. Despite its higher cost, membrane performance can result in a 36% reduction in flux degradation. The issue with fouling has been identified as one of the key challenges of membrane technology. Chemical cleaning is quite effective in removing accumulated foulant. Fouling mitigation techniques have also been shown to have a positive effect on membrane photobioreactors that handle wastewater effluent, resulting in a 50% and 60% reduction in fouling rates for backwash and nitrogen bubble scouring techniques. Membrane hybrid approaches such as hybrid forward-reverse osmosis show promise in removing high concentrations of phosphorus, ammonium, and salt from wastewater. The incorporation of the forward osmosis process can reject 99% of phosphorus and 97% of ammonium, and the reverse osmosis approach can achieve a 99% salt rejection rate. The control strategies for membrane fouling have not been successfully optimized yet and more research is needed to achieve a realistic, long-term direct membrane filtering operation.


Asunto(s)
Compuestos de Amonio , Purificación del Agua , Membranas Artificiales , Ósmosis , Fósforo , Cloruro de Sodio , Aguas Residuales , Purificación del Agua/métodos
2.
Chemosphere ; 286(Pt 1): 131656, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34325255

RESUMEN

The utilization of microalgae in treating wastewater has been an emerging topic focussed on finding an economically sustainable and environmentally friendly approach to treating wastewater. Over the last several years, different types of con microalgae and bacteria consortia have been experimented with to explore their potential in effectively treating wastewater from different sources. The basic features considered while determining efficiency is their capacity to remove nutrients including nitrogen (N) and phosphorus (P) and heavy metals like arsenic (As), lead (Pb), and copper (Cu). This paper reviews the efficiency of microalgae as an approach to treating wastewater from different sources and compares conventional and microalgae-based treatment systems. The paper also discusses the characteristics of wastewater, conventional methods of wastewater treatment that have been used so far, and the technological mechanisms for removing nutrients and heavy metals from contaminated water. Microalgae can successfully eliminate the suspended nutrients and have been reported to successfully remove N, P, and heavy metals by up to 99.6 %, 100 %, and 13%-100 % from different types of wastewater. However, although a microalgae-based wastewater treatment system offers some benefits, it also presents some challenges as outlined in the last section of this paper. Performance in eliminating nutrients from wastewater is affected by different parameters such as temperature, biomass productivity, osmotic ability, pH, O2 concentration. Therefore, the conducting of pilot-scale studies and exploration of the complexities of contaminants under complex environmental conditions is recommended.


Asunto(s)
Microalgas , Biomasa , Nitrógeno , Fósforo , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA