Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 215(Pt 2): 114314, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36116497

RESUMEN

Nanoparticles are inevitable byproducts of modern industry. However, the environmental impacts arising from industrial applications of nanoparticles are largely under-reported. This study evaluated the ecotoxicological effects of aluminum oxide nanoparticles (Al2O3NP) and its influence on sulfacetamide (SA) biodegradation by a freshwater microalga, Scenedesmus obliquus. Although Al2O3NP showed limited toxicity effect on S. obliquus, we observed the toxicity attenuation aspect of Al2O3NP in a mixture of sulfacetamide on microalgae. The addition of 100 mg L-1 of Al2O3NP and 1 mg L-1 of SA reduced total chlorophyll by 23.3% and carotenoids by 21.6% in microalgal compared to control. The gene expression study demonstrated that ATPF0C, Lhcb1, HydA, and psbA genes responsible for ATP synthesis and the photosynthetic system were significantly downregulated, while the Tas gene, which plays a major role in biodegradation of organic xenobiotic chemicals, was significantly upregulated at 1 and 100 mg L-1 of Al2O3NP. The S. obliquus removed 16.8% of SA at 15 mg L-1 in 14 days. However, the removal was slightly enhanced (18.8%) at same concentration of SA in the presence of 50 mg L-1 Al2O3NP. This result proves the stability of sulfacetamide biodegradation capacity of S. obliquus in the presence of Al2O3NP co-contamination. The metabolic analysis showed that SA was degraded into simpler byproducts such as sulfacarbamide, sulfaguanidine, sulfanilamide, 4-(methyl sulfonyl)aniline, and N-hydroxy-benzenamine which have lower ecotoxicity than SA, demonstrating that the ecotoxicity of sulfacetamide has significantly decreased after the microalgal degradation, suggesting the environmental feasibility of microalgae-mediated wastewater technology. This study provides a deeper understanding of the impact of nanoparticles such as Al2O3NP on aquatic ecosystems.


Asunto(s)
Microalgas , Nanopartículas , Scenedesmus , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Óxido de Aluminio/toxicidad , Carotenoides/metabolismo , Carotenoides/farmacología , Clorofila/metabolismo , Clorofila/farmacología , Ecosistema , Agua Dulce , Nanopartículas/toxicidad , Scenedesmus/metabolismo , Sulfacetamida/metabolismo , Sulfacetamida/farmacología , Sulfaguanidina/metabolismo , Sulfaguanidina/farmacología , Aguas Residuales , Xenobióticos/metabolismo
2.
Mar Drugs ; 20(9)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36135775

RESUMEN

SARS-CoV-2 is the causative agent of the COVID-19 pandemic. This in silico study aimed to elucidate therapeutic efficacies against SARS-CoV-2 of phyco-compounds from the seaweed, Ulva fasciata. Twelve phyco-compounds were isolated and toxicity was analyzed by VEGA QSAR. Five compounds were found to be nonmutagenic, noncarcinogenic and nontoxic. Moreover, antiviral activity was evaluated by PASS. Binding affinities of five of these therapeutic compounds were predicted to possess probable biological activity. Fifteen SARS-CoV-2 target proteins were analyzed by the AutoDock Vina program for molecular docking binding energy analysis and the 6Y84 protein was determined to possess optimal binding affinities. The Desmond program from Schrödinger's suite was used to study high performance molecular dynamic simulation properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol-6Y84 for better drug evaluation. The ligand with 6Y84 had stronger binding affinities (-5.9 kcal/mol) over two standard drugs, Chloroquine (-5.6 kcal/mol) and Interferon α-2b (-3.8 kcal/mol). Swiss ADME calculated physicochemical/lipophilicity/water solubility/pharmacokinetic properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, showing that this therapeutic agent may be effective against SARS-CoV-2.


Asunto(s)
Antivirales , SARS-CoV-2 , Ulva , Antivirales/química , Antivirales/farmacología , Cloroquina , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Humanos , Interferón-alfa , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , Terpenos/química , Terpenos/farmacología , Ulva/química , Tratamiento Farmacológico de COVID-19
3.
J Environ Manage ; 298: 113468, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34392094

RESUMEN

A novel metal-biochar (Biochar/AMDS) composite were fabricated by co-pyrolysis of spent coffee waste (SCW)/acid mine drainage sludge (AMDS), and their effective application in adsorptive removal of air pollutants such as formaldehyde in indoor environments was evaluated. The physicochemical characteristics of Biochar/AMDS were analyzed using SEM/EDS, XRF, XRD, BET, and FTIR. The characterization results illustrated that Biochar/AMDS had the highly porous structure, carbonaceous layers, and heterogeneous Fe phases (hematite, metallic Fe, and magnetite). The fixed-bed column test showed that the removal of formaldehyde by Biochar/AMDS was 18.4-fold higher than that by metal-free biochar (i.e., SCW-derived biochar). Changing the ratio of AMDS from 1:6 to 1:1 significantly increased the adsorption capacity for formaldehyde from 1008 to 1811 mg/g. In addition, thermal treatment of used adsorbent at 100 °C effectively restored the adsorptive function exhausted during the column test. These results provide new insights into the fabrication of practical, low-cost and ecofriendly sorbent for formaldehyde.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Café , Formaldehído , Contaminantes Químicos del Agua/análisis
4.
Artículo en Inglés | MEDLINE | ID: mdl-33868441

RESUMEN

Porphyra tenera (laver) has long been a popular and traditional seaweed food in Korea, Japan, and China. Historically, it was known as a marine medicinal herb to treat hemorrhoids and cholera morbus in Donguibogam. We investigated the effects of P. tenera extract (PTE) for its antioxidant and anti-inflammatory activities. These activities were measured using assays for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging and its superoxide dismutase- (SOD-) like activity, and through the inhibitory production of inflammatory mediators (prostaglandin E2 (PGE2), NO, tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6)) in lipopolysaccharide- (LPS-) stimulated Raw 264.7 cells. The antioxidant assay results showed that PTE displayed DPPH radical scavenging activity (46.44%), NO radical scavenging activity (67.14%), and SOD-like activity (80.29%) at a concentration of 5 mg/mL. In the anti-inflammatory assays, treatment with PTE (1 mg/mL) significantly inhibited expression levels of LPS-induced COX-2 and iNOS, as well as the production of PGE2, NO, TNF-α, and IL-6. These results show that PTE has antioxidant and anti-inflammatory properties and provide scientific evidence to explain the antioxidative and anti-inflammatory properties of PTE.

5.
J Ethnopharmacol ; 155(2): 1141-55, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24975194

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Clematis mandshurica Ruprecht root is widely used in Asia as an analgesic and anti-inflammatory agent. This research investigated the anti-inflammatory effects of Clematis mandshurica Ruprecht root extract (CRE) using RAW 264.7 macrophage cells and carrageenan- (CA-) induced rat paw edema. MATERIALS AND METHODS: Production of tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, IL-6, nitric oxide (NO) and prostaglandin E2 (PGE2) in the culture supernatant, mRNA expression of TNF-α, IL-1ß, IL-6, iNOS and COX-2, protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in the extract were assayed. In addition, the effect of CRE on acute inflammation in vivo was observed using CA-induced rat hind paw edema assay. The changes on the histopathology and histomorphometry of hind paw skins-dorsum and ventrum pedis were observed using CA-treated rats. RESULTS: Treatment with CRE (0.25, 0.5, and 1 mg/mL) resulted in inhibited levels of protein expression of lipopolysaccharide- (LPS-) induced iNOS, COX-2, NF-κB, and MAPKs (ERK, JNK, and p38) as well as production of TNF-α, IL-1ß, IL-6, NO, and PGE2 induced by LPS. Consistent with these results, CRE reduced the LPS-induced expressions of these cytokines, iNOS and COX-2 at the mRNA levels in a dose-dependent manner. In particular, results of the CA-induced rat hind paw edema assay showed an anti-edema effect of CRE. In addition, treatment with CRE resulted in dose-dependent inhibition of CA-induced increases of skin thickness, mast cell degranulation, and infiltrated inflammatory, TNF-α, IL-1ß, iNOS, and COX-2-positive cells in both dorsum and ventrum pedis skin, respectively. CONCLUSIONS: These results demonstrate that CRE exhibits anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the pathways of NF-κB and MAPKs in LPS-induced macrophage cells. In addition, results of the CA-induced rat hind paw edema assay show an anti-edema effect of CRE. Our findings also support the traditional use of CRE in the inflammatory symptoms of rheumatic arthritis and acute icteric hepatitis. Thus, CRE may have therapeutic potential for a variety of inflammation-mediated diseases and may be developed into potent anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios/farmacología , Clematis/química , Edema/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/aislamiento & purificación , Carragenina/toxicidad , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Edema/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Mediadores de Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Extractos Vegetales/administración & dosificación , Raíces de Plantas , Ratas , Ratas Sprague-Dawley
6.
Artículo en Inglés | MEDLINE | ID: mdl-23533508

RESUMEN

Pyungwi-san (PWS) is a traditional basic herbal formula. We investigated the effects of PWS on induction of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), pro-inflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor- α (TNF- α )) and nuclear factor-kappa B (NF- κ B) as well as mitogen-activated protein kinases (MAPKs) in lipopolysaccharide-(LPS-) induced Raw 264.7 cells and on paw edema in rats. Treatment with PWS (0.5, 0.75, and 1 mg/mL) resulted in inhibited levels of expression of LPS-induced COX-2, iNOS, NF- κ B, and MAPKs as well as production of prostaglandin E2 (PGE2), nitric oxide (NO), IL-6, and TNF- α induced by LPS. Our results demonstrate that PWS possesses anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the signaling pathways of NF- κ B and MAPKs in LPS-induced macrophage cells. More importantly, results of the carrageenan-(CA-) induced paw edema demonstrate an anti-edema effect of PWS. In addition, it is considered that PWS also inhibits the acute edematous inflammations through suppression of mast cell degranulations and inflammatory mediators, including COX-2, iNOS and TNF- α . Thus, our findings may provide scientific evidence to explain the anti-inflammatory properties of PWS in vitro and in vivo.

7.
Artículo en Inglés | MEDLINE | ID: mdl-22899961

RESUMEN

Bangpungtongsung-san (BPTS), a traditional oriental herbal prescription, is widely used for expelling wind, draining heat, and providing general improvement to the immune system. In this study, we investigated the effects of BPTS on induction of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), proinflammatory cytokines, nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide- (LPS- ) stimulated Raw 264.7 cells, and on paw edema in rats. At concentrations of 0.5, 0.75, and 1 mg/mL, treatment with BPTS inhibited levels of expression of LPS-induced NF-κB and MAPKs (ERK, JNK, and p38) as well as production of proinflammatory mediators, such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) by LPS. These results suggest that BPTS may exert anti-inflammatory effects via reduction of proinflammatory mediators, including NO, PGE(2), TNF-α, and IL-6 through suppression of the signaling pathways of NF-κB and MAPKs in LPS-induced macrophages. In addition, using the carrageenan-induced paw edema assay, an antiedema effect of BPTS was observed in rats. These findings may provide scientific evidence validating the use of BPTS in treatment of patients with heat syndrome in Korean oriental medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA