RESUMEN
Our previous study showed that supplementation with a combination of Lactobacillus curvatus (L. curvatus) HY7601 and Lactobacillus plantarum (L. plantarum) KY1032 reduced the body weight, body fat percentage, body fat mass and L1 subcutaneous fat area in overweight subjects. We aimed to evaluate whether the changes in adiposity after supplementation with Lactobacillus strains were associated with metabolic intermediates. A randomized, double-blind, placebo-controlled study was conducted on 66 non-diabetic and overweight individuals. Over a 12-week period, the probiotic group consumed 2 g of probiotic powder, whereas the placebo group consumed the same product without the probiotics. To investigate metabolic alterations, we performed plasma metabolomics using ultra-performance liquid chromatography and mass spectrometry (UPLC-LTQ/Orbitrap MS). Probiotic supplementation significantly increased the levels of octenoylcarnitine (C8:1), tetradecenoylcarnitine (C14:1), decanoylcarnitine (C10) and dodecenoylcarnitine (C12:1) compared with the levels from placebo supplementation. In the probiotic group, the changes in the body weight, body fat percentage, body fat mass and L1 subcutaneous fat area were negatively associated with changes in the levels of C8:1, C14:1, C10 and C12:1 acylcarnitines. In overweight individuals, probiotic-induced weight loss and adiposity reduction from the probiotic supplementation were associated with an increase in medium-chain acylcarnitines.
Asunto(s)
Tejido Adiposo/metabolismo , Carnitina/análogos & derivados , Lactobacillus/fisiología , Sobrepeso/tratamiento farmacológico , Probióticos/administración & dosificación , Carnitina/administración & dosificación , Carnitina/química , Suplementos Dietéticos/análisis , Método Doble Ciego , Humanos , Lactobacillus plantarum/fisiología , Sobrepeso/metabolismo , Sobrepeso/fisiopatología , Triglicéridos/metabolismo , Pérdida de PesoRESUMEN
To evaluate the pharmacokinetics of compound K after oral administration of HYFRG and RG in humans, an open-label, randomized, single-dose, fasting, and one-period pharmacokinetic study was conducted. After oral administration of a single 3 g dose of HYFRG and RG to 24 healthy Korean males, the mean (±SD) of AUC0-t and C max of compound K from HYFRG were 1466.83 ± 295.89 ng·h/mL and 254.45 ± 51.20 ng/mL, being 115.2- and 80-fold higher than those for RG (12.73 ± 7.83 ng·h/mL and 3.18 ± 1.70 ng/mL), respectively; in case of Sprague Dawley rats the mean (±SD) of AUC0-t and C max of compound K from HYFRG was 58.03 ± 32.53 ng·h/mL and 15.19 ± 10.69 ng/mL, being 6.3- and 6.0-fold higher than those from RG (9.21 ± 7.52 ng·h/mL and 2.55 ± 0.99 ng/mL), respectively. T max of compound K in humans and rats was 2.54 ± 0.92 and 3.33 ± 0.50 h for HYFRG and 9.11 ± 1.45 and 6.75 ± 3.97 hours for RG, respectively. In conclusion, the administration of HYFRG resulted in a higher and faster absorption of compound K in both humans and rats compared to RG.
RESUMEN
The triglyceride-lowering effect of probiotics Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601 were investigated. Male SD Wistar rats were randomly divided into three groups and fed high-fat diet (HFD), HFD and probiotics (5 X 10(9) CFU/day of L. plantarum KY1032 and 5 X 10(9) CFU/day of L. curvatus HY7601), or normal diet for 6 weeks. Probiotic treatment significantly lowered the elevated plasma triglyceride and increased plasma free fatty acid, glycerol, and plasma apolipoprotein A-V (ApoA-V) levels. The probiotic-treated group showed elevated hepatic mRNA expression of PPARα, bile acid receptor (FXR), and ApoA-V. These results demonstrate that L. plantarum KY1032 and L. curvatus HY7601 lower triglycerides in hypertriglyceridemic rats by upregulating ApoA-V, PPARα, and FXR.
Asunto(s)
Hipertrigliceridemia/tratamiento farmacológico , Lactobacillus plantarum/fisiología , Lactobacillus/fisiología , Probióticos/administración & dosificación , Triglicéridos/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Humanos , Hipertrigliceridemia/metabolismo , Hígado/metabolismo , Masculino , Ratas , Ratas WistarRESUMEN
Ursolic acid is a lipophilic pentacyclic triterpenoid found in many fruits and herbs and is used in several herbal folk medicines for diabetes. In this study, we evaluated the effects of apple pomace extract (APE; ursolic acid content, 183 mg/g) on skeletal muscle atrophy. To examine APE therapeutic potential in muscle atrophy, we investigated APE effects on the expression of biomarkers associated with muscle atrophy and hypertrophy. We found that APE inhibited atrophy, while inducing hypertrophy in C2C12 myotubes by decreasing the expression of atrophy-related genes and increasing the expression of hypertrophy-associated genes. The in vivo experiments using mice fed a diet with or without APE showed that APE intake increased skeletal muscle mass, as well as grip strength and exercise capacity. In addition, APE significantly improved endurance in the mice, as evidenced by increased exhaustive running time and muscle weight, and reduced the expression of the genes involved in the development of muscle atrophy. APE also decreased the concentration of serum lactate and lactate dehydrogenase, inorganic phosphate, and creatinine, the indicators of accumulated fatigue and exercise-induced stress. These results suggest that APE may be useful as an ergogenic functional food or dietary supplement.
Asunto(s)
Malus/química , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/prevención & control , Resistencia Física/efectos de los fármacos , Carrera/fisiología , Triterpenos/farmacología , Animales , Biomarcadores/sangre , Línea Celular , Suplementos Dietéticos , Tolerancia al Ejercicio , Fatiga/sangre , Fatiga/prevención & control , Frutas/química , Expresión Génica/efectos de los fármacos , Hipertrofia , Masculino , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fuerza Muscular/genética , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Atrofia Muscular/sangre , Atrofia Muscular/genética , Resistencia Física/fisiología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Triterpenos/uso terapéutico , Ácido UrsólicoRESUMEN
OBJECTIVE: Previous studies have indicated that supplementation with probiotics might improve lipid metabolism. The objective of the study was to evaluate the effect of supplementation with probiotic strains Lactobacillus curvatus (L. curvatus) HY7601 and Lactobacillus plantarum (L. plantarum) KY1032 on triglyceride (TG) and apolipoprotein A-V (apo A-V) levels. METHODS: A randomized, double-blinded, placebo-controlled study was conducted with 128 non-diabetic subjects with hypertriglyceridemia. Over a 12-week test period, the probiotic group consumed 2 g/day of a powdered supplement containing L. curvatus HY7601 and L. plantarum KY1032, whereas the placebo group consumed a powder lacking probiotics. RESULTS: After the treatment, the probiotic group showed an 18.3% (P < 0.001) reduction in TGs and increases of 21.1% (P = 0.001) and 15.6% (P < 0.001) in the apo A-V and LDL particle size, respectively. The probiotic group had a significant reduction in TGs (P = 0.040) and increases in the plasma apo A-V (P = 0.003) and LDL particle size (P < 0.001) compared with the placebo group. In the probiotic group, the reduction in the TG levels was negatively correlated with changes in the apo A-V and baseline TGs, regardless of the APOA5 -1131T > C genotype. CONCLUSION: The consumption of two probiotic strains for 12 weeks reduced TGs and increased the apo A-V and LDL particle size in hypertriglyceridemic subjects. This effect was more pronounced in subjects with higher levels of fasting TGs regardless of their APOA5 -1131T > C genotype.
Asunto(s)
Apolipoproteínas A/química , Hipertrigliceridemia/terapia , Lactobacillus plantarum , Lactobacillus , Probióticos/uso terapéutico , Antropometría , Apolipoproteína A-V , Apolipoproteínas A/genética , Glucemia/análisis , Presión Sanguínea , Proteína C-Reactiva/química , LDL-Colesterol/sangre , Estudios de Cohortes , Suplementos Dietéticos , Método Doble Ciego , Ayuno , Ácidos Grasos no Esterificados/sangre , Femenino , Genotipo , Humanos , Hipertrigliceridemia/microbiología , Lipoproteínas LDL/química , Masculino , Persona de Mediana Edad , Tamaño de la Partícula , Triglicéridos/sangreRESUMEN
Some probiotics and their cell components are known to modulate lipid metabolism in vitro and/or in vivo. This study was carried out to investigate possible anti-adipogenic action of a probiotic cell extract, Lactobacillus plantarum KY1032 cell extract (KY1032-CE), in vitro using 3T3-L1 cells. Lipid regulation in the cell culture system was assessed by AdipoRed assay and Oil red O staining of intracellular lipids and real-time polymerase chain reaction and western blot analysis of adipogenesis-related factors. AdipoRed assay revealed that KY1032-CE treatment significantly decreased lipid accumulation in maturing 3T3-L1 preadipocytes in a dose-dependent manner. Oil red O staining demonstrated that KY1032-CE reduced the number of lipid-containing rounded cells. KY1032-CE down-regulated the mRNA and protein expression of four adipocyte-specific genes: peroxisome proliferator-activated receptor-γ2, CCAAT/enhancer binding protein-α, fatty acid synthase, and adipocyte-fatty acid binding protein. Accordingly, these results indicate that KY1032-CE can reduce fat mass by modulating adipogenesis in maturing preadipocytes. Further studies are needed to elucidate its mode of actions in efficacy tests of KY1032-CE in vivo.
Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Lactobacillus plantarum/química , Probióticos/farmacología , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Probióticos/químicaRESUMEN
An herbal extract mixture and yogurt added to the herbal extract mixture were tested for their protective and therapeutic effects on ethanol-induced liver injury. The herbal extract mixture, yogurt and commercial drugs were used for treatment for two weeks prior to administering a single oral dose of ethanol (3 g/kg body weight). The herbal extract mixture and yogurt added to the herbal extract mixture were found to provide protection against ethanol-induced toxicity comparable to the commercial drug treatment, according to the serum and histopathological analysis. It was also shown that co-treatment with herbal extract mixture and yogurt against a triple oral dose of ethanol (2 g/kg body weight, over one week) provided protection against ethanol toxicity. After the initial set of experiments, the herbal extract mixture and yogurt treatments were extended for three more weeks. When compared to the positive control, further treatment with both the herbal extract and yogurt significantly reduced liver injury and resulted in a lower grade of lipid deposition.