Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 13: 831793, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498422

RESUMEN

Introduction: Diabetic cardiovascular autonomic neuropathy (CAN) is associated with increased mortality and morbidity. To explore metabolic mechanisms associated with CAN we investigated associations between serum metabolites and CAN in persons with type 1 diabetes (T1D). Materials and Methods: Cardiovascular reflex tests (CARTs) (heart rate response to: deep breathing; lying-to-standing test; and the Valsalva maneuver) were used to diagnose CAN in 302 persons with T1D. More than one pathological CARTs defined the CAN diagnosis. Serum metabolomics and lipidomic profiles were analyzed with two complementary non-targeted mass-spectrometry methods. Cross-sectional associations between metabolites and CAN were assessed by linear regression models adjusted for relevant confounders. Results: Participants were median (IQR) aged 55(49, 63) years, 48% males with diabetes duration 39(32, 47) years, HbA1c 63(55,69) mmol/mol and 34% had CAN. A total of 75 metabolites and 106 lipids were analyzed. In crude models, the CAN diagnosis was associated with higher levels of hydroxy fatty acids (2,4- and 3,4-dihydroxybutanoic acids, 4-deoxytetronic acid), creatinine, sugar derivates (ribitol, ribonic acid, myo-inositol), citric acid, glycerol, phenols, phosphatidylcholines and lower levels of free fatty acids and the amino acid methionine (p<0.05). Upon adjustment, positive associations with the CAN diagnoses were retained for hydroxy fatty acids, tricarboxylic acid (TCA) cycle-based sugar derivates, citric acid, and phenols (P<0.05). Conclusion: Metabolic pathways, including the TCA cycle, hydroxy fatty acids, phosphatidylcholines and sugar derivatives are associated with the CAN diagnosis in T1D. These pathway may be part of the pathogeneses leading to CAN and may be modifiable risk factors for the complication.


Asunto(s)
Diabetes Mellitus Tipo 1 , Neuropatías Diabéticas , Ácido Cítrico , Estudios Transversales , Diabetes Mellitus Tipo 1/complicaciones , Neuropatías Diabéticas/complicaciones , Neuropatías Diabéticas/etiología , Ácidos Grasos , Femenino , Glucosa , Humanos , Masculino , Fenoles , Fosfatidilcolinas , Azúcares
2.
Diabetes Care ; 41(8): 1732-1739, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29844096

RESUMEN

OBJECTIVE: Nonalcoholic fatty liver disease (i.e., increased intrahepatic triglyceride [IHTG] content), predisposes to type 2 diabetes and cardiovascular disease. Adipose tissue lipolysis and hepatic de novo lipogenesis (DNL) are the main pathways contributing to IHTG. We hypothesized that dietary macronutrient composition influences the pathways, mediators, and magnitude of weight gain-induced changes in IHTG. RESEARCH DESIGN AND METHODS: We overfed 38 overweight subjects (age 48 ± 2 years, BMI 31 ± 1 kg/m2, liver fat 4.7 ± 0.9%) 1,000 extra kcal/day of saturated (SAT) or unsaturated (UNSAT) fat or simple sugars (CARB) for 3 weeks. We measured IHTG (1H-MRS), pathways contributing to IHTG (lipolysis ([2H5]glycerol) and DNL (2H2O) basally and during euglycemic hyperinsulinemia), insulin resistance, endotoxemia, plasma ceramides, and adipose tissue gene expression at 0 and 3 weeks. RESULTS: Overfeeding SAT increased IHTG more (+55%) than UNSAT (+15%, P < 0.05). CARB increased IHTG (+33%) by stimulating DNL (+98%). SAT significantly increased while UNSAT decreased lipolysis. SAT induced insulin resistance and endotoxemia and significantly increased multiple plasma ceramides. The diets had distinct effects on adipose tissue gene expression. CONCLUSIONS: Macronutrient composition of excess energy influences pathways of IHTG: CARB increases DNL, while SAT increases and UNSAT decreases lipolysis. SAT induced the greatest increase in IHTG, insulin resistance, and harmful ceramides. Decreased intakes of SAT could be beneficial in reducing IHTG and the associated risk of diabetes.


Asunto(s)
Grasas Insaturadas en la Dieta/efectos adversos , Ácidos Grasos/efectos adversos , Conducta Alimentaria/fisiología , Hígado/metabolismo , Monosacáridos/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/etiología , Tejido Adiposo/metabolismo , Adulto , Metabolismo de los Hidratos de Carbono/fisiología , Grasas Insaturadas en la Dieta/metabolismo , Ácidos Grasos/metabolismo , Femenino , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos/fisiología , Masculino , Persona de Mediana Edad , Monosacáridos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Sobrepeso/complicaciones , Sobrepeso/metabolismo , Triglicéridos/sangre , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA