Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Cancer ; 19(1): 593, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208434

RESUMEN

BACKGROUND: Cancer patients with advanced disease routinely exhaust available clinical regimens and lack actionable genomic medicine results, leaving a large patient population without effective treatments options when their disease inevitably progresses. To address the unmet clinical need for evidence-based therapy assignment when standard clinical approaches have failed, we have developed a probabilistic computational modeling approach which integrates molecular sequencing data with functional assay data to develop patient-specific combination cancer treatments. METHODS: Tissue taken from a murine model of alveolar rhabdomyosarcoma was used to perform single agent drug screening and DNA/RNA sequencing experiments; results integrated via our computational modeling approach identified a synergistic personalized two-drug combination. Cells derived from the primary murine tumor were allografted into mouse models and used to validate the personalized two-drug combination. Computational modeling of single agent drug screening and RNA sequencing of multiple heterogenous sites from a single patient's epithelioid sarcoma identified a personalized two-drug combination effective across all tumor regions. The heterogeneity-consensus combination was validated in a xenograft model derived from the patient's primary tumor. Cell cultures derived from human and canine undifferentiated pleomorphic sarcoma were assayed by drug screen; computational modeling identified a resistance-abrogating two-drug combination common to both cell cultures. This combination was validated in vitro via a cell regrowth assay. RESULTS: Our computational modeling approach addresses three major challenges in personalized cancer therapy: synergistic drug combination predictions (validated in vitro and in vivo in a genetically engineered murine cancer model), identification of unifying therapeutic targets to overcome intra-tumor heterogeneity (validated in vivo in a human cancer xenograft), and mitigation of cancer cell resistance and rewiring mechanisms (validated in vitro in a human and canine cancer model). CONCLUSIONS: These proof-of-concept studies support the use of an integrative functional approach to personalized combination therapy prediction for the population of high-risk cancer patients lacking viable clinical options and without actionable DNA sequencing-based therapy.


Asunto(s)
Biología Computacional/métodos , Evaluación Preclínica de Medicamentos/métodos , Quimioterapia Combinada/métodos , Modelos Estadísticos , Medicina de Precisión/métodos , Rabdomiosarcoma Alveolar/tratamiento farmacológico , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Perros , Sinergismo Farmacológico , Femenino , Xenoinjertos , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos NOD
2.
Nanomedicine ; 14(3): 789-799, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29317342

RESUMEN

Photodynamic therapy is a promising and effective non-invasive therapeutic approach for the treatment of bladder cancers. Therapies targeting HSP90 have the advantage of tumor cell selectivity and have shown great preclinical efficacy. In this study, we evaluated a novel multifunctional nanoporphyrin platform loaded with an HSP90 inhibitor 17AAG (NP-AAG) for use as a multi-modality therapy against bladder cancer. NP-AAG was efficiently accumulated and retained at bladder cancer patient-derived xenograft (PDX) over 7 days. PDX tumors could be synergistically eradicated with a single intravenous injection of NP-AAG followed by multiple light treatments within 7 days. NP-AAG mediated treatment could not only specifically deliver 17AAG and produce heat and reactive oxygen species, but also more effectively inhibit essential bladder cancer essential signaling molecules like Akt, Src, and Erk, as well as HIF-1α induced by photo-therapy. This multifunctional nanoplatform has high clinical relevance and could dramatically improve management for bladder cancers with minimal toxicity.


Asunto(s)
Benzoquinonas/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Lactamas Macrocíclicas/farmacología , Imagen Molecular/métodos , Nanopartículas/administración & dosificación , Fotoquimioterapia , Porfirinas/administración & dosificación , Neoplasias de la Vejiga Urinaria/terapia , Anciano de 80 o más Años , Animales , Benzoquinonas/administración & dosificación , Benzoquinonas/química , Supervivencia Celular , Terapia Combinada , Femenino , Humanos , Lactamas Macrocíclicas/administración & dosificación , Lactamas Macrocíclicas/química , Ratones , Ratones Endogámicos NOD , Ratones SCID , Terapia Molecular Dirigida , Nanopartículas/química , Porfirinas/química , Porfirinas/efectos de la radiación , Especies Reactivas de Oxígeno , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Biomaterials ; 104: 339-51, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27479049

RESUMEN

The overall prognosis of bladder cancer has not been improved over the last 30 years and therefore, there is a great medical need to develop novel diagnosis and therapy approaches for bladder cancer. We developed a multifunctional nanoporphyrin platform that was coated with a bladder cancer-specific ligand named PLZ4. PLZ4-nanoporphyrin (PNP) integrates photodynamic diagnosis, image-guided photodynamic therapy, photothermal therapy and targeted chemotherapy in a single procedure. PNPs are spherical, relatively small (around 23 nm), and have the ability to preferably emit fluorescence/heat/reactive oxygen species upon illumination with near infrared light. Doxorubicin (DOX) loaded PNPs possess slower drug release and dramatically longer systemic circulation time compared to free DOX. The fluorescence signal of PNPs efficiently and selectively increased in bladder cancer cells but not normal urothelial cells in vitro and in an orthotopic patient derived bladder cancer xenograft (PDX) models, indicating their great potential for photodynamic diagnosis. Photodynamic therapy with PNPs was significantly more potent than 5-aminolevulinic acid, and eliminated orthotopic PDX bladder cancers after intravesical treatment. Image-guided photodynamic and photothermal therapies synergized with targeted chemotherapy of DOX and significantly prolonged overall survival of mice carrying PDXs. In conclusion, this uniquely engineered targeting PNP selectively targeted tumor cells for photodynamic diagnosis, and served as effective triple-modality (photodynamic/photothermal/chemo) therapeutic agents against bladder cancers. This platform can be easily adapted to individualized medicine in a clinical setting and has tremendous potential to improve the management of bladder cancer in the clinic.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Microscopía Fluorescente/métodos , Nanopartículas/administración & dosificación , Fotoquimioterapia/métodos , Porfirinas/administración & dosificación , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Animales , Línea Celular Tumoral , Terapia Combinada/métodos , Doxorrubicina/administración & dosificación , Humanos , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida/métodos , Nanopartículas/química , Péptidos Cíclicos/administración & dosificación , Fármacos Fotosensibilizantes/administración & dosificación , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Resultado del Tratamiento
4.
Clin Lung Cancer ; 16(3): 165-72, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25838158

RESUMEN

New approaches to optimization of cancer drug development in the laboratory and the clinic will be required to fully achieve the goal of individualized, precision cancer therapy. Improved preclinical models that more closely reflect the now recognized genomic complexity of human cancers are needed. Here we describe a collaborative research project that integrates core resources of The Jackson Laboratory Basic Science Cancer Center with genomics and clinical research facilities at the UC Davis Comprehensive Cancer Center to establish a clinically and genomically annotated patient-derived xenograft (PDX) platform designed to enhance new drug development and strategies for targeted therapies. Advanced stage non-small-cell lung cancer (NSCLC) was selected for initial studies because of emergence of a number of "druggable" molecular targets, and recent recognition of substantial inter- and intrapatient tumor heterogeneity. Additionally, clonal evolution after targeted therapy interventions make this tumor type ideal for investigation of this platform. Using the immunodeficient NOD scid gamma mouse, > 200 NSCLC tumor biopsies have been xenotransplanted. During the annotation process, patient tumors and subsequent PDXs are compared at multiple levels, including histomorphology, clinically applicable molecular biomarkers, global gene expression patterns, gene copy number variations, and DNA/chromosomal alterations. NSCLC PDXs are grouped into panels of interest according to oncogene subtype and/or histologic subtype. Multiregimen drug testing, paired with next-generation sequencing before and after therapy and timed tumor pharmacodynamics enables determination of efficacy, signaling pathway alterations, and mechanisms of sensitivity-resistance in individual models. This approach should facilitate derivation of new therapeutic strategies and the transition to individualized therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Genómica , Neoplasias Pulmonares/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Endogámicos NOD , Ratones SCID
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA