Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203851

RESUMEN

The present study explores an environmentally friendly green approach to obtain cerium oxide nanoparticles via a biomediated route using Mellisa officinalis and Hypericum perforatum plant extracts as reducing agents. The as-prepared nanoparticles were studied for their structural and morphological characteristics using XRD diffractometry, scanning electron microscopy, Raman, fluorescence and electronic absorption spectra, and X-ray photoelectron spectroscopy (XPS). The XRD pattern has shown the centered fluorite crystal structure of cerium oxide nanoparticles with average crystallite size below 10 nm. These observations were in agreement with the STEM data. The cubic fluorite structure of the cerium oxide nanoparticles was confirmed by the vibrational mode around 462 cm-1 due to the Ce-08 unit. The optical band gap was estimated from UV-Vis reflectance spectra, which was found to decrease from 3.24 eV to 2.98 eV. A higher specific area was determined for the sample using M. officinalis aqueous extract. The EDX data indicated that only cerium and oxygen are present in the green synthesized nanoparticles.


Asunto(s)
Cerio , Nanopartículas , Extractos Vegetales , Microscopía Electrónica de Rastreo , Aceites de Plantas
2.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240263

RESUMEN

Cerium oxide nanoparticles were obtained using aqueous extracts of Chelidonium majus and Viscum album. X-ray diffractometry analysis confirmed the crystalline structure of the synthesized cerium oxide nanoparticles calcined at 600 °C. Scanning electron microscopy, UV-Vis reflectance and Raman spectroscopy, XPS, and fluorescence studies were utilized to interpret the morphological and optical properties of these nanoparticles. The STEM images revealed the spherical shape of the nanoparticles and that they were predominantly uniform in size. The optical band gap of our cerium nanoparticles was determined to be 3.3 and 3.0 eV from reflectance measurements using the Tauc plots. The nanoparticle sizes evaluated from the Raman band at 464 cm-1 due to the F2g mode of the cubic fluorite structure of cerium oxide are close to those determined from the XRD and STEM data. The fluorescence results showed emission bands at 425, 446, 467, and 480 nm. The electronic absorption spectra have exhibited an absorption band around 325 nm. The antioxidant potential of the cerium oxide nanoparticles was estimated by DPPH scavenging assay.


Asunto(s)
Cerio , Nanopartículas , Extractos Vegetales/química , Difracción de Rayos X , Nanopartículas/química , Cerio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA