Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Chem Biodivers ; 21(3): e202301661, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38359057

RESUMEN

Both diabetes and cancer pose significant threats to public health. To overcome these challenges, nanobiotechnology offers innovative solutions for the treatment of these diseases. However, the synthesis of nanoparticles can be complex, costly and environmentally toxic. Therefore, in this study, we successfully synthesized Camellia sinensis silver nanoparticles (CS-AgNPs) biologically from methanolic leaf extract of C. sinensis and as confirmed by the visual appearance which exhibited strong absorption at 456 nm in UV-visible spectroscopy. The fourier transform infrared spectroscopy (FTIR) analysis revealed that phytochemicals of C. sinensis were coated with AgNPs. Scanning electron microscopy (SEM) analysis showed the spherical shape of CS-AgNPs, with a size of 15.954 nm, while X-ray diffraction spectrometry (XRD) analysis detected a size of 20.32 nm. Thermogravimetric analysis (TGA) indicated the thermal stability of CS-AgNPs. The synthesized CS-AgNPs significantly inhibited the ehrlich ascites carcinoma (EAC) cell growth with 53.42±1.101 %. The EAC cell line induced mice exhibited increased level of the serum aspartate aminotransferase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP), however this elevated serum parameter significantly reduced and controlled by the treatment with CS-AgNPs. Moreover, in a streptozotocin-induced diabetic mice model, CS-AgNPs greatly reduced blood glucose, total cholesterol, triglyceride, low-density lipoprotein (LDL) and creatinine levels. These findings highlight that the synthesized CS-AgNPs have significant anticancer and antidiabetic activities that could be used as promising particles for the treatment of these major diseases. However, pre-clinical and clinical trial should be addressed before use this particles as therapeutics agents.


Asunto(s)
Camellia sinensis , Diabetes Mellitus Experimental , Nanopartículas del Metal , Neoplasias , Ratones , Animales , Nanopartículas del Metal/química , Plata/química , Camellia sinensis/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos , Difracción de Rayos X
2.
Mol Neurobiol ; 61(3): 1237-1270, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37698833

RESUMEN

A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.


Asunto(s)
Productos Biológicos , Enfermedad de Huntington , Fármacos Neuroprotectores , Ratas , Animales , Enfermedad de Huntington/metabolismo , Ratas Wistar , Acetilcolinesterasa , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Productos Biológicos/uso terapéutico , Nitrocompuestos/farmacología , Propionatos/farmacología , Propionatos/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad
3.
Biomed Pharmacother ; 170: 116034, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141282

RESUMEN

The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.


Asunto(s)
Curcumina , Neoplasias , Humanos , Curcumina/farmacología , Curcumina/uso terapéutico , Curcumina/química , Neoplasias/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Transducción de Señal , Inflamación/tratamiento farmacológico
4.
Nat Prod Bioprospect ; 13(1): 45, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902881

RESUMEN

Hypertension (HTN), a complex cardiovascular disease (CVD), significantly impacts global health, prompting a growing interest in complementary and alternative therapeutic approaches. This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN, with an emphasis on the molecular mechanisms of action found in substances found in plants, herbs, and seafood. Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies. Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure (BP)-regulating effects of these natural substances better. Polyphenols, flavonoids, alkaloids, and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone, reducing oxidative stress (OS), reducing inflammation, and improving endothelial function. The article explains the vasodilatory, diuretic, and renin-angiotensin-aldosterone system (RAAS) modifying properties of vital plants such as garlic and olive leaf. Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs, providing diverse strategies to combat HTN due to their biological actions. The review also discusses the functions of calcium channel blockers originating from natural sources, angiotensin-converting enzyme (ACE) inhibitors, and nitric oxide (NO) donors. Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN. Omega-3 fatty acids, peptides, and minerals obtained from seafood sources have anti-inflammatory, vasodilatory, and antioxidant properties that improve vascular health and control BP. Overall, we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.

5.
Parkinsonism Relat Disord ; 115: 105799, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633805

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. Although the exact etiology of PD remains elusive, growing evidence suggests a complex interplay of genetic, environmental, and lifestyle factors in its development. Despite advances in pharmacological interventions, current treatments primarily focus on managing symptoms rather than altering the disease's underlying course. In recent years, natural phytocompounds have emerged as a promising avenue for PD management. Phytochemicals derived from plants, such as phenolic acids, flavones, phenols, flavonoids, polyphenols, saponins, terpenes, alkaloids, and amino acids, have been extensively studied for their potential neuroprotective effects. These bioactive compounds possess a wide range of therapeutic properties, including antioxidant, anti-inflammatory, anti-apoptotic, and anti-aggregation activities, which may counteract the neurodegenerative processes in PD. This comprehensive review delves into the pathophysiology of PD, with a specific focus on the roles of oxidative stress, mitochondrial dysfunction, and protein malfunction in disease pathogenesis. The review collates a wealth of evidence from preclinical studies and in vitro experiments, highlighting the potential of various phytochemicals in attenuating dopaminergic neuron degeneration, reducing α-synuclein aggregation, and modulating neuroinflammatory responses. Prominent among the natural compounds studied are curcumin, resveratrol, coenzyme Q10, and omega-3 fatty acids, which have demonstrated neuroprotective effects in experimental models of PD. Additionally, flavonoids like baicalein, luteolin, quercetin, and nobiletin, and alkaloids such as berberine and physostigmine, show promise in mitigating PD-associated pathologies. This review emphasizes the need for further research through controlled clinical trials to establish the safety and efficacy of these natural compounds in PD management. Although preclinical evidence is compelling, the translation of these findings into effective therapies for PD necessitates robust clinical investigation. Rigorous evaluation of pharmacokinetics, bioavailability, and potential drug interactions is imperative to pave the way for evidence-based treatment strategies. With the rising interest in natural alternatives and the potential for synergistic effects with conventional therapies, this review serves as a comprehensive resource for pharmaceutical industries, researchers, and clinicians seeking novel therapeutic approaches to combat PD. Harnessing the therapeutic potential of these natural phytocompounds may hold the key to improving the quality of life for PD patients and moving towards disease-modifying therapies in the future.


Asunto(s)
Alcaloides , Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Calidad de Vida , Flavonoides/farmacología , Flavonoides/uso terapéutico , Neuronas Dopaminérgicas/patología , Alcaloides/farmacología , Alcaloides/uso terapéutico , Manejo de la Enfermedad
6.
Heliyon ; 9(7): e18090, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519687

RESUMEN

Pomegranate, scientifically known as Punica granatum, has been a traditional medicinal remedy since ancient times. Research findings have shown that using pomegranate extracts can positively affect a variety of signaling pathways, including those involved in angiogenesis, inflammation, hyperproliferation, cellular transformation, the beginning stages of tumorigenesis, and lastly, a reduction in the final stages of metastasis and tumorigenesis. This is due to the fact that pomegranate extracts are rich in polyphenols, which are known to inhibit the activity of certain signaling pathways. In the United States, cancer is the second biggest cause of death after heart disease. The number of fatalities caused by cancer in the United States escalates yearly. Altering one's diet, getting involved in regular physical activity, and sustaining a healthy body weight are three easy steps an individual may follow to lower their cancer risk. Simply garnishing one's diet with vegetables and fruits has the potential to avert at least 20% of all cancer diagnoses and around 200,000 deaths caused by cancer each year. Vegetables, fruits, and other dietary constituents, such as minerals and phytochemicals, are currently being researched for their potential to prevent cancer. It is being done because they are safe, have minimal toxicity, possess antioxidant properties, and are universally accepted as dietary supplements. Ancient civilizations used the fruit of pomegranate (Punica granatum L.) to prevent and cure a number of diseases. The anti-tumorigenic, anti-inflammatory and anti-proliferative qualities of pomegranate have been shown in studies with the fruit, juice, extract, and oil of the pomegranate. Pomegranate has the capacity to affect several signaling pathways, which implies that it may have the potential to be employed not only as a chemopreventive agent but also as a chemotherapeutic drug. This article elaborates on some recent preclinical and clinical research which shows that pomegranate seems to have a role in the prevention and treatment of a number of cancers, including but not limited to breast, bladder, skin, prostate, colon, and lung cancer, among others.

9.
Chem Biol Interact ; 368: 110170, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202214

RESUMEN

Colon cancer affects both men and women and is the world's second most significant cause of cancer-related mortality. Colon cancer death rates have risen worldwide due to the current food habit and lifestyle, which include a lot of meat, alcohol, and not enough physical exercise. As a result, novel, less harmful pharmacological treatments for colon cancer are needed now more than ever before. Colorectal cancer (CRC) affects a significant portion of the world's population. Chemotherapy's limits, as demonstrated by side effects and resistance in CRC patients, are now being sought after despite recent breakthroughs that have improved patient care and survival. Numerous chemical compounds present in medicinal herbs have shown anti-tumor and anti-apoptotic properties against various cancers, including CRC, in animal experiments. These chemicals, which come from several phytochemical families, activate several signaling pathways. This article discusses research on the anti-CRC benefits of many plants conducted in vitro, as well as the phytochemical components of plants that may play a role in the study. Researchers are also looking into the impact of these compounds on various pathways involved in cancer signaling. According to this review, anti-CRC compounds may be generated from medicinal plants. That's why we're looking at how natural items can help treat cancer while lowering the risk of developing it.


Asunto(s)
Productos Biológicos , Neoplasias del Colon , Neoplasias Colorrectales , Plantas Medicinales , Animales , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Plantas Medicinales/química , Fitoquímicos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/prevención & control
10.
Front Pharmacol ; 13: 976385, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299886

RESUMEN

Natural substances originating from plants have long been used to treat neurodegenerative disorders (NDs). Parkinson's disease (PD) is a ND. The deterioration and subsequent cognitive impairments of the midbrain nigral dopaminergic neurons distinguish by this characteristic. Various pathogenic mechanisms and critical components have been reported, despite the fact that the origin is unknown, such as protein aggregation, iron buildup, mitochondrial dysfunction, neuroinflammation and oxidative stress. Anti-Parkinson drugs like dopamine (DA) agonists, levodopa, carbidopa, monoamine oxidase type B inhibitors and anticholinergics are used to replace DA in the current treatment model. Surgery is advised in cases where drug therapy is ineffective. Unfortunately, the current conventional treatments for PD have a number of harmful side effects and are expensive. As a result, new therapeutic strategies that control the mechanisms that contribute to neuronal death and dysfunction must be addressed. Natural resources have long been a useful source of possible treatments. PD can be treated with a variety of natural therapies made from medicinal herbs, fruits, and vegetables. In addition to their well-known anti-oxidative and anti-inflammatory capabilities, these natural products also play inhibitory roles in iron buildup, protein misfolding, the maintenance of proteasomal breakdown, mitochondrial homeostasis, and other neuroprotective processes. The goal of this research is to systematically characterize the currently available medications for Parkinson's and their therapeutic effects, which target diverse pathways. Overall, this analysis looks at the kinds of natural things that could be used in the future to treat PD in new ways or as supplements to existing treatments. We looked at the medicinal plants that can be used to treat PD. The use of natural remedies, especially those derived from plants, to treat PD has been on the rise. This article examines the fundamental characteristics of medicinal plants and the bioactive substances found in them that may be utilized to treat PD.

11.
Front Cell Infect Microbiol ; 12: 929430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072227

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a substantial number of deaths around the world, making it a serious and pressing public health hazard. Phytochemicals could thus provide a rich source of potent and safer anti-SARS-CoV-2 drugs. The absence of approved treatments or vaccinations continues to be an issue, forcing the creation of new medicines. Computer-aided drug design has helped to speed up the drug research and development process by decreasing costs and time. Natural compounds like terpenoids, alkaloids, polyphenols, and flavonoid derivatives have a perfect impact against viral replication and facilitate future studies in novel drug discovery. This would be more effective if collaboration took place between governments, researchers, clinicians, and traditional medicine practitioners' safe and effective therapeutic research. Through a computational approach, this study aims to contribute to the development of effective treatment methods by examining the mechanisms relating to the binding and subsequent inhibition of SARS-CoV-2 ribonucleic acid (RNA)-dependent RNA polymerase (RdRp). The in silico method has also been employed to determine the most effective drug among the mentioned compound and their aquatic, nonaquatic, and pharmacokinetics' data have been analyzed. The highest binding energy has been reported -11.4 kcal/mol against SARS-CoV-2 main protease (7MBG) in L05. Besides, all the ligands are non-carcinogenic, excluding L04, and have good water solubility and no AMES toxicity. The discovery of preclinical drug candidate molecules and the structural elucidation of pharmacological therapeutic targets have expedited both structure-based and ligand-based drug design. This review article will assist physicians and researchers in realizing the enormous potential of computer-aided drug design in the design and discovery of therapeutic molecules, and hence in the treatment of deadly diseases.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Diseño de Fármacos , Humanos , SARS-CoV-2 , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA