RESUMEN
Biofilm mediated infections have major clinical impact. Staphylococcus aureus is a pathogen that frequently causes biofilm forming infections, such as those associated with medical devices and persistent wounds. Microorganisms embedded in biofilm are impervious to antibiotics and other antimicrobial agents, thus they are difficult to eliminate. The upsurge of multi-drug resistant strains makes treating such illnesses even more difficult. Therefore, new strategies are required to combat such type of infections. In this work, we have proposed an alternative therapeutic option to eradicate preformed biofilm of vancomycin resistant Staphylococcus aureus (VRSA) and enhanced phagocytosis by neutrophils in fresh human blood using curcumin mediated antimicrobial photodynamic therapy (aPDT).At sub-MIC of curcumin, different anti-biofilm assays and microscopic examinations were performed, followed by 20 J/cm2 of blue laser light irradiation which corresponds to 52 s only. The result showed significant disruption of VRSA biofilm. Moreover, when curcumin-aPDT treated VRSA biofilm was exposed to whole blood from healthy donors, it was nearly completely eradicated. The present study suggests that curcumin-aPDT enhanced phagocytosis may be a useful strategy for inactivating VRSA biofilms adhering to medical implant surfaces.
Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Antibacterianos/farmacología , Biopelículas , Humanos , Control de Infecciones , Fagocitosis , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Staphylococcus aureus Resistente a VancomicinaRESUMEN
Biofilm mediated infection caused by multi-drug resistant bacteria are difficult to treat since it protects the microorganisms by host defense system, making them resistant to antibiotics and other antimicrobial agents. Combating such type of nosocomial infection, especially in immunocompromised patients, is an urgent need and foremost challenge faced by clinicians. Therefore, antimicrobial photodynamic therapy (aPDT) has been intensely pursued as an alternative therapy for bacterial infections. aPDT leads to the generation of reactive oxygen species (ROS) that destroy bacterial cells in the presence of a photosensitizer, visible light and oxygen. Here, we elucidated a possibility of its clinical application by reducing the treatment time and exposing curcumin to 20 J/cm2 of blue laser light, which corresponds to only 52 s to counteract vancomycin resistant Staphylococcus aureus (VRSA) both in vitro and in vivo. To understand the mechanism of action, the generation of total reactive oxygen species (ROS) was quantified by 2'-7'-dichlorofluorescein diacetate (DCFH-DA) and the type of phototoxicity was confirmed by fluorescence spectroscopic analysis. The data showed more production of singlet oxygen, indicating type-II phototoxicity. Different anti-biofilm assays (crystal violet and congo red assays) and microscopic studies were performed at sub-MIC concentration of curcumin followed by treatment with laser light against preformed biofilm of VRSA. The result showed significant reduction in the preformed biofilm formation. Finally, its therapeutic potential was validated in skin abrasion wistar rat model. The result showed significant inhibition of bacterial growth. Furthermore, immunomodulatory analysis with rat serum was performed. A significant reduction in expression of proinflammatory cytokines TNF-α and IL-6 were observed. Hence, we conclude that curcumin mediated aPDT with 20 J/cm2 of blue laser treatment (for 52 s) could be used against multi-drug resistant bacterial infections and preformed biofilm formation as a potential therapeutic approach.