Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Ethnopharmacol ; 325: 117842, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38310987

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acacia nilotica (L.) Wild. Ex Delilie is a shrub with significant ethnomedicinal stature. Therefore, in the undertaken study, its wound healing attributes are determined. AIM OF THE STUDY: The current study provided evidence of the traditional use of A. nilotica species and conferred A. nilotica bark extract as a potent candidate for wound healing agents. MATERIALS & METHODS: A. nilotica leaves extract (ANL-E); A. nilotica bark extract (ANB-E), and A. nilotica stem extract (ANS-E) were prepared using methanol-chloroform (1:1). Phytochemical analysis was performed using gallic acid equivalent (GAE) total phenolic content (TPC), quercetin equivalent (QE) total flavonoid content (TFC) assays and High-performance liquid chromatography (HPLC). In vitro antioxidant potential (free radical scavenging activity (FRSA), total antioxidant capacity (TAC), and ferric reducing antioxidant power (FRAP) assay), antibacterial activity (broth microdilution method) and hemolytic analysis was carried out. Wound healing proficiency of ANB-E was determined by wound excision model followed by estimating hydroxyproline content and endogenous antioxidant markers. RESULTS: Maximum phenolic and flavonoid content were depicted by ANB-E i.e., 50.9 ± 0.34 µg gallic acid equivalent/mg extract and 28.7 ± 0.13 µg quercetin equivalent/mg extract, respectively. HPLC analysis unraveled the presence of a significant amount of catechin in ANL-E, ANB-E and ANS-E (54.66 ± 0.02, 44.9 ± 0.004 and 31.36 ± 0.02 µg/mg extract) respectively. Highest percent free radical scavenging activity, total antioxidant capacity, and ferric reducing action power (i.e., 93.3 ± 0.42 %, 222.10 ± 0.76, and 222.86 ± 0.54 µg ascorbic acid equivalent/mg extract) were exhibited by ANB-E. Maximum antibacterial potential against Staphylococcus aureus was exhibited by ANB-E (MIC 12.5 µg/ml). Two of the extracts i.e., ANL-E and ANB-E were found biocompatible with less than 5 % hemolytic potential. Based upon findings of in vitro analysis, ANB-E (10, 5, and 2.5 % w/w, C1, C2, and C3, respectively) was selected for evaluating its in vivo wound healing potential. Maximum contraction of wound area and fastest epithelization i.e., 98 ± 0.05 % and 11.2 ± 1.00 (day) was exhibited by C1. Maximum hydroxyproline content, glutathione, catalase, and peroxidase were demonstrated by C1 i.e., 15.9 ± 0.52 µg/mg, 9.3 ± 0.17 mmol/mg, 7.2 ± 0.17 and 6.2 ± 0.14 U/mg, respectively. Maximal curbed lipid peroxidation i.e., 0.7 ± 0.15 mmol/mg was also depicted by C1. CONCLUSIONS: In a nutshell, the current investigation endorsed the wound healing potential of ANB-E suggesting it to be an excellent candidate for future studies.


Asunto(s)
Acacia , Antioxidantes , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/análisis , Acacia/química , Quercetina , Hidroxiprolina , Ácido Gálico , Antibacterianos/farmacología , Flavonoides/farmacología , Flavonoides/análisis , Radicales Libres
2.
Fitoterapia ; 170: 105628, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37517557

RESUMEN

Crude extracts prepared from aerial parts and nut galls of Quercus floribunda Lindl. Ex. A. Camus were evaluated for phytochemical screening, in vitro antioxidant, and in vivo analgesic, anti-inflammatory and antipyretic activities. Various solvents including methanol (M), acetone (A), distilled water (DW), distilled water + methanol (DWM) were used for extraction. Highest total phenolic (66.9 ± 0.05 µg GAE/mgE) and flavonoid content (38.4 ± 0.72 µg QE/mgE) were measured in QFAA extract by colorimetric methods. Cumulative maximum concentrations of polyphenols were quantified in QFMG, QFAA, and QFMA extracts i.e. 19.036, 15. 574 and 11.647 µg/mg of extract by RP-HPLC analysis. From aerial parts extracts, apentacyclic tritepenoid, glutinol was isolated using column chromatography techniques and structure was elucidated using spectroscopic techniques. QFDWMA (205.5 ± 0.56 µg AAE/mg of extract) showed highest total reducing power while highest total antioxidant capacity (207.1 ± 0.49 AAE/mg of extract) and free radical scavenging potential (96.1 ± 0.42%) were observed in QFAA extract. QFAA extract showed significant (p ≤ 0.001) analgesic potential in different pain models i.e. hot plate method, cold plate method, Haffner's tail clip method and acetic acid induced writhing assay having 50.20%, 62.07%, 57.26% and 70.49% analgesia respectively at 300 mg/kg. QFAA extract showed maximum anti-inflammatory activity in croton oil induced edema (68.83%) and in carrageenan induced paw edema models (72.32%) at 300 mg/kg concentration. QFAA extract markedly reduced the rectal temperature at 300 mg/kg concentration, in brewer's yeast induced pyrexia model. Detailed investigations can be executed in future to determine the molecular mechanisms of these pharmacological attributes.


Asunto(s)
Quercus , Extractos Vegetales/química , Metanol , Antioxidantes , Estructura Molecular , Antiinflamatorios , Analgésicos/farmacología , Inflamación/tratamiento farmacológico , Dolor/tratamiento farmacológico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Agua/efectos adversos
3.
Molecules ; 27(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364163

RESUMEN

Plants are a promising source of bioactive compounds that can be used to tackle many emerging diseases both infectious and non-infectious. Among different plants, Acacia is a very large genus and exhibits a diverse array of bioactive agents with remarkable pharmacological properties against different diseases. Acacia, a herb found all over the world, contains approximately more than 1200 species of the Fabaceae family. In the present review, we have collected detailed information on biochemical as well as pharmacological properties. The data were retrieved using different databases, such as Elsevier, PubMed, Science Direct, Google Scholar, and Scopus, and an extensive literature survey was carried out. Studies have shown that Acacia possesses several secondary metabolites, including amines, cyanogenic glycosides, flavonoids, alkaloids, seed oils, cyclitols, fluoroacetate, gums, non-protein amino acids, diterpenes, fatty acids, terpenes, hydrolyzable tannins, and condensed tannins. These compounds exhibit a wide range of pharmaceutical applications such as anti-inflammatory, antioxidant, antidiarrheal, antidiabetic, anticancer, antiviral, liver protective effects, and so on. Thus, the literature shows the tremendous phytochemical impact of the genus Acacia in medicine. Overall, we recommend that more research should be conducted on the medicinal value and isolation and purification of the effective therapeutic agents from Acacia species for the treatment of various ailments.


Asunto(s)
Acacia , Medicina Tradicional , Etnofarmacología , Fitoterapia , Extractos Vegetales/química , Fitoquímicos/química
4.
Molecules ; 27(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080247

RESUMEN

Combretaceae, an immense family involving species (500) or genera (20), originates in tropical and subtropical regions. This family has evinced medicinal values such as anti-leishmanial, cytotoxic, antibacterial, antidiabetic, antiprotozoal, and antifungal properties. Conocarpus lancifolius (C. lancifolius) methanol extract (CLM) was prepared, then compound isolation performed by open column chromatography, and compound structure was determined by spectroscopic techniques (13C NMR, IR spectroscopy, 1H-NMR, mass spectrometry UV-visible, and 2D correlation techniques). Molecular docking studies of ligand were performed on transcriptional regulators 4EY7 and 2GV9 to observe possible interactions. Phytochemical screening revealed the presence of secondary metabolites including steroids, cardiac glycosides, saponins, anthraquinones, and flavonoids. The isolated compound was distinguished as lancifolamide (LFD). It showed cytotoxic activity against human breast cancer, murine lymphocytic leukemia, and normal cells, human embryonic kidney cells, and rat glioma cells with IC50 values of 0.72 µg/mL, 2.01 µg/mL, 1.55 µg/mL, and 2.40 µg/mL, respectively. Although no cytotoxic activity was noticed against human colon cancer and human lung cancer, LFD showed 24.04% inhibition against BChE and 60.30% inhibition against AChE and is therefore beneficial for Alzheimer's disease (AD). AChE and LFD interact mechanistically in a way that is optimum for neurodegenerative disorders, according to molecular docking studies. Methanol and dichloromethane extract of C. lancifolius and LFD shows antibacterial and antifungal activity against antibiotic resistance Bacillus subtilis, Streptococcus mutans, Brevibacillus laterosporus, Salmonella Typhi, Candida albicans, and Cryptococcus neoformans, respectively. LFD shows antiviral activity against HSV-1 with 26% inhibition IP. The outcomes of this study support the use of LFD for cognitive disorders and highlight its underlying mechanism, targeting AChE, DNA-POL, NF-KB, and TNF-α, etc., for the first time.


Asunto(s)
Inhibidores de la Colinesterasa , Combretaceae , Herpes Simple , Herpesvirus Humano 1 , Acetilcolinesterasa/metabolismo , Animales , Inhibidores de la Colinesterasa/química , Combretaceae/química , Herpesvirus Humano 1/efectos de los fármacos , Humanos , Metanol , Ratones , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Ratas
5.
J Appl Microbiol ; 133(6): 3307-3321, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35722974

RESUMEN

AIM: Hexavalent chromium (Cr+6 ) is one of the most toxic heavy metals that have deteriorating effects on the growth and quality of the end product of wheat. Consequently, this research was designed to evaluate the role of Bacillus subtilis and phosphorus fertilizer on wheat facing Cr+6 stress. METHODS AND RESULTS: The soil was incubated with Bacillus subtilis and phosphorus fertilizer before sowing. The statistical analysis of the data showed that the co-application of B. subtilis and phosphorus yielded considerably more significant (p < 0.05) results compared with an individual application of the respective treatments. The co-treatment improved the morphological, physiological and biochemical parameters of plants compared with untreated controls. The increase in shoot length, root length, shoot fresh weight and root fresh weight was 38.17%, 29.31%, 47.89% and 45.85%, respectively, compared with untreated stress-facing plants. The application of B. subtilis and phosphorus enhanced osmolytes content (proline 39.98% and sugar 41.30%), relative water content and stability maintenance of proteins (86.65%) and cell membranes (66.66%). Furthermore, augmented production of antioxidants by 67.71% (superoxide dismutase), 95.39% (ascorbate peroxidase) and 60.88% (catalase), respectively, were observed in the Cr+6 - stressed plants after co-application of B. subtilis and phosphorus. CONCLUSION: It was observed that the accumulation of Cr+6 was reduced by 54.24%, 59.19% and 90.26% in the shoot, root and wheat grains, respectively. Thus, the combined application of B. subtilis and phosphorus has the potential to reduce the heavy metal toxicity in crops. SIGNIFICANCE AND IMPACT OF THE STUDY: This study explored the usefulness of Bacillus subtilis and phosphorus application on wheat in heavy metal stress. It is a step toward the combinatorial use of plant growth-promoting rhizobacteria with nutrients to improve the ecosystems' health.


Asunto(s)
Contaminantes del Suelo , Triticum , Triticum/microbiología , Fósforo/metabolismo , Bacillus subtilis/metabolismo , Fertilizantes , Ecosistema , Cromo/metabolismo , Contaminantes del Suelo/metabolismo
6.
Molecules ; 27(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335116

RESUMEN

Pelargonium graveolens, rose-scented geranium, is commonly used in the perfume industry. P. graveolens is enriched with essential oils, phenolics, flavonoids, which account for its tremendous biological activities. Laser light treatment and arbuscular mycorrhizal fungi (AMF) inoculation can further enhance the phytochemical content in a significant manner. In this study, we aimed to explore the synergistic impact of these two factors on P. graveolens. For this, we used four groups of surface-sterilized seeds: (1) control group1 (non-irradiated; non-colonized group); (2) control group2 (mycorrhizal colonized group); (3) helium-neon (He-Ne) laser-irradiated group; (4) mycorrhizal colonization coupled with He-Ne laser-irradiation group. Treated seeds were growing in artificial soil inculcated with Rhizophagus irregularis MUCL 41833, in a climate-controlled chamber. After 6 weeks, P. graveolens plants were checked for their phytochemical content and antibacterial potential. Laser light application improved the mycorrhizal colonization in P. graveolens plants which subsequently increased biomass accumulation, minerals uptake, and biological value of P. graveolens. The increase in the biological value was evident by the increase in the essential oils production. The concomitant application of laser light and mycorrhizal colonization also boosted the antimicrobial activity of P. graveolens. These results suggest that AMF co-treatment with laser light could be used as a promising approach to enhance the metabolic content and yield of P. graveolens for industrial and pharmaceutical use.


Asunto(s)
Antiinfecciosos , Micorrizas , Aceites Volátiles , Pelargonium , Antiinfecciosos/química , Antiinfecciosos/farmacología , Minerales , Micorrizas/metabolismo , Aceites Volátiles/química , Pelargonium/química
7.
Molecules ; 27(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35164259

RESUMEN

The use of natural products as therapeutic agents is rapidly growing recently. In the current study, we investigated the protective effects of green tea supplementation on lead-induced toxicity in mice. Forty albino mice were divided into four groups as follows: A: control group; B: green tea receiving group; C: lead-intoxicated group; and D: lead-intoxicated group supplemented with green tea. At the end of the experiment, the animals were tested for neurobehavioral and biochemical alterations. Green tea was analyzed through Gas Chromatography-Mass Spectrometry (GC/MS) analysis. We found that supplementation with green tea ameliorated the lead-associated increase in body weight and blood glucose. Green tea supplementation also changed the blood picture that was affected due to lead toxicity and ameliorated lead-induced dyslipidemia. The group of mice that were supplemented with green tea has shown positive alterations in locomotory, anxiety, memory, and learning behaviors. The GC/MS analysis revealed many active ingredients among which the two most abundant were caffeine and 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester. We concluded that green tea supplementation has several positive effects on the lead-induced neurotoxicity in mice and that these effects may be attributed to its main two active ingredients.


Asunto(s)
Intoxicación del Sistema Nervioso por Plomo/prevención & control , Plomo/toxicidad , , Animales , Conducta Animal/efectos de los fármacos , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Encéfalo/metabolismo , Dislipidemias/inducido químicamente , Dislipidemias/prevención & control , Cromatografía de Gases y Espectrometría de Masas/métodos , Plomo/sangre , Plomo/metabolismo , Ratones
8.
Molecules ; 27(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35056790

RESUMEN

The present study was designed to evaluate polarity-dependent extraction efficiency and pharmacological profiling of Polygonum glabrum Willd. Crude extracts of leaves, roots, stems, and seeds, prepared from solvents of varying polarities, were subjected to phytochemical, antioxidant, antibacterial, antifungal, antidiabetic, and cytotoxicity assays. Maximum extraction yield (20.0% w/w) was observed in the case of an acetone:methanol (AC:M) root extract. Distilled water:methanol (W:M) leaves extract showed maximum phenolic contents. Maximum flavonoid content and free radical scavenging potential were found in methanolic (M) seed extract. HPLC-DAD quantification displayed the manifestation of substantial quantities of quercetin, rutin, gallic acid, quercetin, catechin, and kaempferol in various extracts. The highest ascorbic acid equivalent total antioxidant capacity and reducing power potential was found in distilled water roots and W:M leaf extracts, respectively. Chloroform (C) seeds extract produced a maximum zone of inhibition against Salmonella typhimurium. Promising protein kinase inhibition and antifungal activity against Mucor sp. were demonstrated by C leaf extract. AC:M leaves extract exhibited significant cytotoxic capability against brine shrimp larvae and α-amylase inhibition. Present results suggest that the nature of pharmacological responses depends upon the polarity of extraction solvents and parts of the plant used. P. glabrum can be considered as a potential candidate for the isolation of bioactive compounds with profound therapeutic importance.


Asunto(s)
Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión/métodos , Fitoquímicos/química , Fitoquímicos/farmacología , Polygonum/química , Animales , Antiinfecciosos/análisis , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/análisis , Antioxidantes/química , Antioxidantes/farmacología , Artemia/efectos de los fármacos , Pruebas de Enzimas , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Fitoquímicos/análisis , Extractos Vegetales/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/análisis , Polifenoles/química , Polifenoles/farmacología , Inhibidores de Proteínas Quinasas/análisis , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
9.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885744

RESUMEN

A worldwide increase in the incidence of fungal infections, emergence of new fungal strains, and antifungal resistance to commercially available antibiotics indicate the need to investigate new treatment options for fungal diseases. Therefore, the interest in exploring the antifungal activity of medicinal plants has now been increased to discover phyto-therapeutics in replacement to conventional antifungal drugs. The study was conducted to explore and identify the mechanism of action of antifungal agents of edible plants, including Cinnamomum zeylanicum, Cinnamomum tamala, Amomum subulatum, Trigonella foenumgraecum, Mentha piperita, Coriandrum sativum, Lactuca sativa, and Brassica oleraceae var. italica. The antifungal potential was assessed via the disc diffusion method and, subsequently, the extracts were assessed for phytochemicals and total antioxidant activity. Potent polyphenols were detected using high-performance liquid chromatography (HPLC) and antifungal mechanism of action was evaluated in silico. Cinnamomum zeylanicum exhibited antifungal activity against all the tested strains while all plant extracts showed antifungal activity against Fusarium solani. Rutin, kaempferol, and quercetin were identified as common polyphenols. In silico studies showed that rutin displayed the greatest affinity with binding pocket of fungal 14-alpha demethylase and nucleoside diphosphokinase with the binding affinity (Kd, -9.4 and -8.9, respectively), as compared to terbinafine. Results indicated that Cinnamomum zeylanicum and Cinnamomum tamala exert their antifungal effect possibly due to kaempferol and rutin, respectively, or possibly by inhibition of nucleoside diphosphokinase (NDK) and 14-alpha demethylase (CYP51), while Amomum subulatum and Trigonella foenum graecum might exhibit antifungal potential due to quercetin. Overall, the study demonstrates that plant-derived products have a high potential to control fungal infections.


Asunto(s)
Antifúngicos/química , Productos Biológicos/química , Micosis/tratamiento farmacológico , Polifenoles/química , Amomum/química , Antifúngicos/farmacología , Antioxidantes/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Brassica/química , Cinnamomum zeylanicum/química , Coriandrum/química , Lactuca/química , Mentha piperita/química , Micosis/microbiología , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Comestibles/química , Plantas Medicinales/química , Polifenoles/aislamiento & purificación , Polifenoles/farmacología , Quercetina/química , Quercetina/aislamiento & purificación , Quercetina/farmacología , Trigonella/química
10.
Molecules ; 26(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34946613

RESUMEN

Solubility of phytoconstituents depends on the polarity of the extraction medium used, which might result in the different pharmacological responses of extracts. In line with this, ethnomedicinally important food plant (i.e., Caralluma tuberculata extracts) have been made in fourteen distinct solvent systems that were then analyzed phytochemically via total phenolic amount estimation, total flavonoid amount estimation, and HPLC detection and quantification of the selected polyphenols. Test extracts were then subjected to a battery of in vitro assays i.e., antioxidants (DDPH scavenging, antioxidant capacity, and reducing power estimation), antimicrobial (antibacterial, antifungal, and antileishmanial), cytotoxic (brine shrimps, THP-1 human leukemia cell lines and normal lymphocytes), and protein kinase inhibition assays. Maximum phenolic and flavonoid contents were computed in distilled water-acetone and acetone extracts (i.e., 16 ± 1 µg/mg extract and 8 ± 0.4/mg extract, respectively). HPLC-DAD quantified rutin (0.58 µg/mg extract) and gallic acid (0.4 µg/mg extract) in methanol-ethyl acetate and methanol extracts, respectively. Water-acetone extract exhibited the highest DPPH scavenging of 36 ± 1%. Total reducing potential of 76.0 ± 1 µg/mg extract was shown by ethanol chloroform while maximum total antioxidant capacity was depicted by the acetone extract (92.21 ± 0.70 µg/mg extract). Maximal antifungal effect against Mucor sp., antileishmanial, brine shrimp cytotoxicity, THP-1 cell line cytotoxicity, and protein kinase inhibitory activities were shown by ethyl acetate-methanol (MIC: 50 µg/disc), n-hexane (IC50: 120.8 ± 3.7 µg/mL), ethyl acetate (LD50: 29.94 ± 1.6 µg/mL), distilled water-acetone (IC50: 118 ± 3.4 µg/mL) and methanol-chloroform (ZOI: 19 ± 1 mm) extracts, respectively. Our findings show the dependency of phytochemicals and bioactivities on the polarity of the extraction solvent and our preliminary screening suggests the C. tuberculata extract formulations to be tested and used in different ailments, however, detailed studies remain necessary for corroboration with our results.


Asunto(s)
Antioxidantes , Apocynaceae/química , Citotoxinas , Fitoquímicos , Extractos Vegetales/química , Animales , Antioxidantes/química , Antioxidantes/farmacología , Artemia , Citotoxinas/química , Citotoxinas/farmacología , Humanos , Fitoquímicos/química , Fitoquímicos/farmacología , Células THP-1
11.
Molecules ; 26(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34946778

RESUMEN

Withaferin A (WA) is a pivotal withanolide that has conquered a conspicuous place in research, owning to its multidimensional biological properties. It is an abundant constituent in Withania somnifera Dunal. (Ashwagandha, WS) that is one of the prehistoric pivotal remedies in Ayurveda. This article reviews the literature about the pharmacological profile of WA with special emphasis on its anticancer aspect. We reviewed research publications concerning WA through four databases and provided a descriptive analysis of literature without statistical or qualitative analysis. WA has been found as an effective remedy with multifaceted mechanisms and a broad spectrum of pharmacological profiles. It has anticancer, anti-inflammatory, antiherpetic, antifibrotic, antiplatelet, profibrinolytic, immunosuppressive, antipigmentation, antileishmanial, and healing potentials. Evidence for wide pharmacological actions of WA has been established by both in vivo and in vitro studies. Further, the scientific literature accentuates the role of WA harboring a variable therapeutic spectrum for integrative cancer chemoprevention and cure. WA is a modern drug from traditional medicine that is necessary to be advanced to clinical trials for advocating its utility as a commercial drug.


Asunto(s)
Medicina Ayurvédica , Extractos Vegetales , Withania/química , Witanólidos , Humanos , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Witanólidos/química , Witanólidos/uso terapéutico
12.
Plants (Basel) ; 10(9)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34579426

RESUMEN

Herbal and traditional medicines can play a pivotal role in combating cancer and neglected tropical diseases. Ajuga bracteosa, family Lamiaceae, is an important medicinal plant. The genetic transformation of A. bracteosa with rol genes of Agrobacterium rhizogenes further enhances its metabolic content. This study aimed at undertaking the molecular, phytochemical, and in vitro biological analysis of A. bracteosa extracts. We transformed the A. bracteosa plant with rol genes and raised the regenerants from the hairy roots. Transgenic integration and expression of rolB were confirmed by conventional polymerase chain reaction (PCR) and qPCR analysis. The methanol: chloroform crude extracts of wild-type plants and transgenic regenerants were screened for in vitro antibacterial, antihemolytic, cytotoxic, anticancer, and leishmanial activity. Among all plants, transgenic line 3 (ABRL3) showed the highest expression of the rolB gene. Fourier transform infra-red (FTIR) analysis confirmed the enhanced number of functional groups of active compounds in all transgenic lines. Moreover, ABRL3 exhibited the highest antibacterial activity, minimum hemolytic activity (CC50 = 7293.05 ± 7 µg/mL) and maximum antileishmanial activity (IC50 of 56.16 ± 2 µg/mL). ABRL1 demonstrated the most prominent brine shrimp cytotoxicity (LD5039.6 ± 4 µg/mL). ABRL3 was most effective against various human cancer cell lines with an IC50 of 57.1 ± 2.2 µg/mL, 46.2 ± 1.1 µg/mL, 72.4 ± 1.3 µg/mL, 73.3 ± 2.1 µg/mL, 98.7 ± 1.6 µg/mL, and 97.1 ± 2.5 µg/mL against HepG2, LM3, A549, HT29, MCF-7, and MDA-MB-231, respectively. Overall, these transgenic extracts may offer a cheaper therapeutic source than the more expensive synthetic drugs.

13.
Molecules ; 26(16)2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34443462

RESUMEN

Ajuga bracteosa Wall. ex Benth. is an endangered medicinal herb traditionally used against different ailments. The present study aimed to create new insight into the fundamental mechanisms of genetic transformation and the biological activities of this plant. We transformed the A. bracteosa plant with rol genes of Agrobacterium rhizogenes and raised the regenerants from the hairy roots. These transgenic regenerants were screened for in vitro antioxidant activities, a range of in vivo assays, elemental analysis, polyphenol content, and different phytochemicals found through HPLC. Among 18 polyphenolic standards, kaempferol was most abundant in all transgenic lines. Furthermore, transgenic line 3 (ABRL3) showed maximum phenolics and flavonoids content among all tested plant extracts. ABRL3 also demonstrated the highest total antioxidant capacity (8.16 ± 1 µg AAE/mg), total reducing power, (6.60 ± 1.17 µg AAE/mg), DPPH activity (IC50 = 59.5 ± 0.8 µg/mL), hydroxyl ion scavenging (IC50 = 122.5 ± 0.90 µg/mL), and iron-chelating power (IC50 = 154.8 ± 2 µg/mL). Moreover, transformed plant extracts produced significant analgesic, anti-inflammatory, anticoagulant, and antidepressant activities in BALB/c mice models. In conclusion, transgenic regenerants of A. bracteosa pose better antioxidant and pharmacological properties under the effect of rol genes as compared to wild-type plants.


Asunto(s)
Ajuga/química , Polifenoles/farmacología , Regeneración , Analgésicos/farmacología , Animales , Antiinflamatorios/farmacología , Anticoagulantes/farmacología , Antidepresivos/farmacología , Antioxidantes/análisis , Bioensayo , Compuestos de Bifenilo/química , Cromatografía Líquida de Alta Presión , Elementos Químicos , Flavonoides/análisis , Depuradores de Radicales Libres/química , Hidróxidos/química , Concentración 50 Inhibidora , Quelantes del Hierro/farmacología , Masculino , Ratones Endogámicos BALB C , Fenoles/análisis , Picratos/química , Plantas Modificadas Genéticamente , Regeneración/efectos de los fármacos
14.
Molecules ; 26(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809305

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.


Asunto(s)
Bacillus cereus/fisiología , Cromo/farmacocinética , Planta de la Mostaza/metabolismo , Planta de la Mostaza/microbiología , Contaminantes del Suelo/farmacocinética , Antioxidantes/metabolismo , Bacillus cereus/genética , Biodegradación Ambiental , Clorofila/metabolismo , Genes Bacterianos , Planta de la Mostaza/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Rhizobiaceae/fisiología , Microbiología del Suelo , Estrés Fisiológico , Simbiosis
15.
Molecules ; 27(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35011299

RESUMEN

The current study was intended to explore the phytochemical profiling and therapeutic activities of Putranjiva roxburghii Wall. Crude extracts of different plant parts were subjected to the determination of antioxidant, antimicrobial, antidiabetic, cytotoxic, and protein kinase inhibitory potential by using solvents of varying polarity ranges. Maximum phenolic content was notified in distilled water extracts of the stem (DW-S) and leaf (DW-L) while the highest flavonoid content was obtained in ethyl acetate leaf (EA-L) extract. HPLC-DAD analysis confirmed the presence of various polyphenols, quantified in the range of 0.02 ± 0.36 to 2.05 ± 0.18 µg/mg extract. Maximum DPPH scavenging activity was expressed by methanolic extract of the stem (MeOH-S). The highest antioxidant capacity and reducing power was shown by MeOH-S and leaf methanolic extract (MeOH-L), respectively. Proficient antibacterial activity was shown by EA-L extract against Bacillus subtilis and Escherichia coli. Remarkable α-amylase and α-glucosidase inhibition potential was expressed by ethyl acetate fruit (EA-F) and n-Hexane leaf (nH-L) extracts, respectively. In case of brine shrimp lethality assay, 41.67% of the extracts (LC50 < 50 µg/mL) were considered as extremely cytotoxic. The test extracts also showed mild antifungal and protein kinase inhibition activities. The present study explores the therapeutic potential of P. roxburghii and calls for subsequent studies to isolate new bioactive leads through bioactivity-guided isolation.


Asunto(s)
Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Polifenoles/análisis , Polifenoles/farmacología , Tracheophyta/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/análisis , Antioxidantes/farmacología , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión , Activación Enzimática , Inhibidores de Glicósido Hidrolasas/análisis , Inhibidores de Glicósido Hidrolasas/farmacología , Pruebas de Sensibilidad Microbiana , Fitoquímicos/análisis , Fitoquímicos/farmacología
16.
Appl Biochem Biotechnol ; 188(2): 460-480, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30536034

RESUMEN

Prostate cancer is one of the major causes of cancer-related deaths in men and there is a growing interest in identifying natural compounds for its management. We analyzed bioactive withanolides in Withania coagulans from 11 different sites in Pakistan and evaluated the antiprostate cancer activities of leaf extracts from two sites with the greatest amounts. Total withanolide concentration differed by ~ 17-fold between sites, ranging from 1.01 ± 0.01 mg/g dry weight (mean ± SE) at Jand to 16.83 ± 0.02 mg/g at Mohmand Agency. Different tissues varied in their total withanolide content with roots having the least (0.42 ± 0.07 mg/g dry weight) and leaves the most (2.45 ± 0.45 mg/g). We found strong inverse correlations between site annual precipitation versus withanolide amounts in fruits (r = - 0.84, P = 0.001), leaves (r = - 0.88, P < 0.001), roots (r = - 0.91, P < 0.001), and total (r = - 0.89, P < 0.001), but not stems (r = - 0.20, P = 0.556). Extracts made from Mianwali and Mohmand Agency leaves possessed high anticancer activity in terms of increased induction of apoptosis and decreased cell viability, cell proliferation, invasion, and migration of different prostate cancer cell lines. These results are useful for the selection of withanolide-rich germplasm with potent anticancer properties.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Fitoterapia , Neoplasias de la Próstata/tratamiento farmacológico , Withania , Witanólidos/farmacología , Antineoplásicos Fitogénicos/análisis , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Clima , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Pakistán , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Hojas de la Planta/química , Plantas Medicinales/química , Neoplasias de la Próstata/patología , Withania/química , Witanólidos/análisis
17.
Mol Carcinog ; 57(5): 653-663, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29436741

RESUMEN

Epithelial-to-mesenchymal transition (EMT) plays a crucial role in prostate cancer (PCa) metastasis. This has led to a surge in the efforts for identification of safer and more effective compounds which can modulate EMT and consequently inhibiting migration and invasion of PCa cells. We reported previously that Plectranthoic acid (PA), a natural compound isolated from the extracts of Ficus microcarpa, has the capability to induce cell cycle arrest and apoptosis in PCa cells. Here, we determined the effects of PA on EMT, migration, and invasion of PCa cells. Inhibition of EMT induced by different mitogens was effectively inhibited by PA treatment with subsequent decrease in migration of PCa cells. Employing a PCa cell culture model of TGF-ß-induced EMT, we showed that PA has the ability to reverse EMT. PA treatment was associated with induction of epithelial markers and decrease in the expression of mesenchymal markers in PCa cells. Proteomic analysis identified Rac1 as the major cadherin signaling protein modulated with PA treatment. In silico studies indicated that PA docked to the CH domain of NEDD9 protein with an estimated free binding energy of -7.34 Kcal/moL. Our studies revealed significant inhibition of Rac1/NEDD9 pathway in PA treated cells thereby providing a molecular basis of the inhibitory effect of PA on PCa cell migration and invasion. In conclusion, our data suggest that PA should be investigated further as an adjuvant treatment in human PCa cells, given its potential as an anti-invasive agent.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ficus/química , Fosfoproteínas/metabolismo , Neoplasias de la Próstata/metabolismo , Triterpenos/farmacología , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Masculino , Modelos Moleculares , Simulación del Acoplamiento Molecular , Invasividad Neoplásica , Fosfoproteínas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Proteómica , Factor de Crecimiento Transformador beta/farmacología , Triterpenos/química
18.
Oncotarget ; 7(4): 3819-31, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26683363

RESUMEN

Epidemiologic studies indicated that diabetics treated with metformin had a lower incidence of cancer than those taking other anti-diabetes drugs. This led to a surge in the efforts for identification of safer and more effective metformin mimetic compounds. The plant Ficus microcarpa is widely used for the treatment of type 2 diabetes in traditional medicine in South Asia. We obtained extracts from this plant and identified a small molecule, plectranthoic acid (PA), with potent 5'AMP-activated kinase (AMPK) activating properties far superior than metformin. AMPK is the central hub of metabolic regulation and a well-studied therapeutic target for metabolic syndrome, type-2 diabetes and cancer. We observed that treatment of prostate cancer (PCa) cells with PA inhibited proliferation and induced G0/G1 phase cell cycle arrest that was associated with up-regulation of cyclin kinase inhibitors p21/CIP1 and p27/KIP1. PA treatment suppressed mTOR/S6K signaling and induced apoptosis in PCa cells in an AMPK-dependent manner. Interestingly, PA-induced autophagy in PCa cells was found to be independent of AMPK activation. Combination studies of PA and metformin demonstrated that metformin had an inhibitory effect on PA-induced AMPK activation and suppressed PA-mediated apoptosis. Given the anti-proliferative role of PA in cancer and its potent anti-hyperglycemic activity, we suggest that PA should be explored further as a novel activator of AMPK for its ultimate use for the prevention of cancers and treatment of type 2 diabetes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Triterpenos Pentacíclicos/farmacología , Extractos Vegetales/farmacología , Neoplasias de la Próstata/patología , Triterpenos/farmacología , Proteínas Quinasas Activadas por AMP/química , Western Blotting , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ficus/química , Citometría de Flujo , Humanos , Masculino , Simulación de Dinámica Molecular , Extractos Vegetales/aislamiento & purificación , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Conformación Proteica , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA