Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Adhes Dent ; 24(1): 375-384, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36255853

RESUMEN

PURPOSE: The purpose of this study was to assess the effect of aging and alumina-particle air abrasion at different pressures on the bond strength of two luting composites to a translucent 3Y-TZP zirconia. MATERIALS AND METHODS: Half of the 192 disk-shaped zirconia specimens were aged in an autoclave (group A) for 20 h (134°C, 2 bar), and the other half was not aged (group N). For each group, a different surface treatment was applied: as-sintered (group SIN), alumina-particle air abrasion either at 1 bar (group 1B) or at 2.5 bar (group 2.5B). Disks were bonded to Plexiglas tubes filled with composite resin using a phosphate monomer-based luting composite (group SA) or with a separate phosphate monomer containing primer before using a phosphate-monomer-free luting composite (group V5). All specimens were subjected to tensile bond strength testing (TBS) before and after thermocycling. RESULTS: There were no statistically significant differences caused by autoclave aging for the test groups before thermocycling, except for the A-SIN-SA group, where the TBS decreased significantly. The variation of the aluminaparticle air abrasion pressure showed no statistically significant effect, except in the N-1B-V5 group, where TBS was significantly lower than N-2.5B-V5. After thermocycling, the TBS of most groups decreased significantly. Specimens of the primer group, which were abraded at 1 bar, showed a significant decrease in TBS in comparison with alumina-particle air abrasion at 2.5 bar. CONCLUSION: Twenty hours of autoclave aging had almost no influence on the bond strength of the test groups. For the primer/resin bonding system, higher pressure during alumina-particle air abrasion might help obtain a higher and more durable bond strength to zirconia.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos de Resina , Cementos de Resina/química , Abrasión Dental por Aire , Polimetil Metacrilato , Análisis del Estrés Dental , Ensayo de Materiales , Propiedades de Superficie , Circonio/química , Resinas Compuestas , Óxido de Aluminio/química , Fosfatos
2.
Dent Mater ; 37(3): 516-522, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33461761

RESUMEN

OBJECTIVE: The airborne-particle abrasion of zirconia with alumina particle (APA) has been reported to result in the durable bonding of appropriate adhesive luting systems. However, whether a delay between APA and the application of the adhesive luting material might affect the resulting bond strength and its durability is unknown. METHODS: A total of 140 disc-shaped zirconia specimens were divided according to the elapsed time between the APA of zirconia and its bonding into 5 test groups (15 min, 1 h, 4 h, 24 h, and 72 h). The specimens were airborne-particle abraded with 50-µm Al2O3, and then stored at room temperature according to the test group (n = 28/group). Surface free energy (SFE) was measured for 12 specimens per group using a goniometer. For each group 16 Plexiglas tubes filled with composite resin were bonded to the zirconia specimens with an adhesive luting resin (Panavia 21). Tensile bond strength (TBS) was tested for subgroups of 8 specimens after water storage for 3 days and for 150 days with 37,500 thermal cycles. RESULTS: SFE decreased significantly within 24 h after APA. TBS after 3 days of water storage ranged from 38.3 (1 h) to 28.4 MPa (24 h) and after 150 days with thermocycling from 38.3 (15 min) to 24.8 MPa (24 h). SIGNIFICANCE: Based on these results, the time between the APA of zirconia and the application of adhesive materials should be minimized when bonding nonretentive zirconia restorations clinically.


Asunto(s)
Recubrimiento Dental Adhesivo , Óxido de Aluminio , Cerámica , Análisis del Estrés Dental , Ensayo de Materiales , Cementos de Resina , Propiedades de Superficie , Resistencia a la Tracción , Circonio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA