Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 105(1): 105-117, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33215258

RESUMEN

The world economy depends heavily on crude oil. With a conventional oil recovery process, only one-third of crude oil is extracted. Various technologies have been developed to maximize the recovery of oil resources from natural reservoirs. Polymer technology has been used in many oil fields around the world. The biopolymer pullulan, produced by some Aureobasidium species, has been used in many industrial applications, but no research has been conducted regarding its use in the microbial enhancement of oil recovery (MEOR). Here, we investigate the potential of pullulan produced by newly isolated species Aureobasidium mangrovei SARA-138H for enhancement of oil recovery. Our results indicate that under optimized conditions, that is, sucrose as the carbon source in the medium, a pH of 9, incubation at 25 °C, and 250 rpm agitation, the fungus was able to produce 10 g/L of pullulan. The maximum viscosity achieved under these conditions was 318 cP after 15 days of incubation. Pullulan solution (10 g/L) showed the ability to recover 36.7% of heavy crude oil after 34.2% of secondary oil recovery. However, diluted pullulan in brine at the ratio (1:1) resulted in the recovery of 20.23% of oil from the residual oil in the core after 22.6% of secondary oil recovery. A 20-day injectivity test revealed that pullulan passed smoothly through the core, causing no blockage. It was concluded that pullulan from A. mangrovei SARA-138H was able to increase oil recovery to a degree comparable to that achieved with many polymers used in oil fields around the world. KEY POINTS: • First report of biopolymer "pullulan" from A. mangrovie. • Optimum conditions for pullulan production were obtained. • Pullulan recovered 36.7% of heavy oil from residual oil in place, with good injectivity.


Asunto(s)
Aureobasidium , Petróleo , Biopolímeros , Medios de Cultivo , Viscosidad
2.
PLoS One ; 12(2): e0171432, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28196087

RESUMEN

Microbial Enhanced Oil Recovery (MEOR) is a potential technology for residual heavy oil recovery. Many heavy oil fields in Oman and elsewhere have difficulty in crude oil recovery because it is expensive due to its high viscosity. Indigenous microbes are capable of improving the fluidity of heavy oil, by changing its high viscosity and producing lighter oil fractions. Many spore-forming bacteria were isolated from soil samples collected from oil fields in Oman. Among the isolates, an autochthonous spore-forming bacterium was found to enhance heavy oil recovery, which was identified by 16S rDNA sequencing as Paenibacillus ehimensis BS1. The isolate showed maximum growth at high heavy oil concentrations within four days of incubation. Biotransformation of heavy crude oil to light aliphatic and aromatic compounds and its potential in EOR was analyzed under aerobic and anaerobic reservoir conditions. The isolates were grown aerobically in Bushnell-Haas medium with 1% (w/v) heavy crude oil. The crude oil analyzed by GC-MS showed a significant biotransformation from the ninth day of incubation under aerobic conditions. The total biotransformation of heavy crude oil was 67.1% with 45.9% in aliphatic and 85.3% in aromatic fractions. Core flooding experiments were carried out by injecting the isolates in brine supplemented with Bushnell-Haas medium into Berea sandstone cores and were incubated for twelve days under oil reservoir conditions (50°C). The extra recovered oil was analyzed by GC-MS. The residual oil recovered from core flood experiments ranged between 10-13% compared to the control experiment. The GC-MS analyses of the extra recovered oil showed 38.99% biotransformation of heavy to light oil. The results also indicated the presence of 22.9% extra aliphatic compounds in the residual crude oil recovered compared to that of a control. The most abundant compound in the extra recovered crude oil was identified as 1-bromoeicosane. The investigations showed the potential of P. ehimensis BS1 in MEOR technology by the biotransformation of heavy to lighter crude oil under aerobic and reservoir conditions. Heavy oil recovery and biotransformation to lighter components are of great economic value and a few studies have been done.


Asunto(s)
Paenibacillus/metabolismo , Petróleo/metabolismo , Biodegradación Ambiental , ADN Bacteriano/genética , Paenibacillus/genética , Petróleo/microbiología , ARN Ribosómico 16S/genética
3.
ScientificWorldJournal ; 2014: 309159, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24550702

RESUMEN

Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.


Asunto(s)
Bacterias/metabolismo , Petróleo , Esporas Bacterianas/metabolismo , Restauración y Remediación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA