Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 207: 108433, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38364631

RESUMEN

Rapid industrialization and extensive agricultural practices are the major causes of soil heavy metal contamination, which needs urgent attention to safeguard the soils from contamination. However, the phytotoxic effects of excessive metals in plants are the primary obstacle to efficient phytoextraction. The present study evaluated the effects of hesperidin (HSP) on metals (Cu, Cd, Cr, Zn) phytoextraction by hyperaccumulator (Celosia argentea L.) plants. For this purpose, HSP, a flavonoid compound with strong antioxidant potential to assist metal phytoextraction was used under metal stress in plants. Celosia argentea plants suffered significant (P ≤ 0.001) oxidative damage due to the colossal accumulation of metals (Cu, Cd, Cr, Zn). However, HSP supplementation notably (P ≤ 0.001) abated ROS generation (O2•‒, •OH, H2O2), lipoxygenase activity, methylglyoxal production, and relative membrane permeability that clearly indicated HSP-mediated decline in oxidative injury in plants. Exogenous HSP improved (P ≤ 0.001) the production of non-protein thiol, phytochelatins, osmolytes, and antioxidant compounds. Further, HSP enhanced (P ≤ 0.001) H2S and NO endogenous production, which might have improved the GSH: GSSG ratio. Consequently, HSP-treated C. argentea plants had higher biomass alongside elevated metal accumulation mirrored as profound modifications in translocation factor (TF), bioaccumulation coefficient (BAC), and bioconcentration factor (BCF). In this context, HSP significantly enhanced TF of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.01), while BAC of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.001). Further, BCF was significant (P ≤ 0.05) only in plants grown under Cr-spiked soil. Overall, HSP has the potential for phytoremediation of metals by C. argentea, which might be a suitable strategy for metal-polluted soils.


Asunto(s)
Celosia , Hesperidina , Metales Pesados , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Zinc , Cobre , Antioxidantes , Cromo/toxicidad , Peróxido de Hidrógeno , Biodegradación Ambiental , Suelo , Fotosíntesis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
2.
Ecotoxicol Environ Saf ; 268: 115699, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979353

RESUMEN

This study investigated the physiological and molecular responses of rice genotype '9311' to Cd stress and the mitigating effects of silicon oxide nanoparticles (SiO NPs). Cd exposure severely hindered plant growth, chlorophyll content, photosynthesis, and Cd accumulation. However, SiO NPs supplementation, particularly the SiONP100 treatment, significantly alleviated Cd-induced toxicity, mitigating the adverse effects on plant growth while maintaining chlorophyll content and photosynthetic attributes. The SiONP100 treatment also reduced Cd accumulation, indicating a preference for Si uptake in genotype 9311. Complex interactions among Cd, Si, Mg, Ca, and K were uncovered, with fluctuations in MDA and H2O2 contents. Distinct morphological changes in stomatal aperture and mesophyll cell structures were observed, including changes in starch granules, grana thylakoids, and osmophilic plastoglobuli. Moreover, following SiONP100 supplementation, genotype 9311 increased peroxidase, superoxide dismutase, and catalase activities by 56%, 44%, and 53% in shoots and 62%, 49%, and 65% in roots, respectively, indicating a robust defense mechanism against Cd stress. Notably, OsNramp5, OsHMA3, OsSOD-Cu/Zn, OsCATA, OsCATB, and OsAPX1 showed significant expression after SiO NPs treatment, suggesting potential Cd translocation within rice tissues. Overall, SiO NPs supplementation holds promise for enhancing Cd tolerance in rice plants while maintaining essential physiological functions.


Asunto(s)
Nanopartículas , Oryza , Cadmio/metabolismo , Oryza/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Clorofila/metabolismo , Raíces de Plantas/metabolismo , Plantones
3.
Plants (Basel) ; 12(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111829

RESUMEN

Silicon (Si) and biochar (Bc) are key signaling conditioners that improve plant metabolic processes and promote drought tolerance. However, the specific role of their integrative application under water restrictions on economical plants is not yet well understood. Two field experiments throughout 2018/2019 and 2019/2020 were conducted to examine the physio-biochemical modifications and yield attributes of borage plants mediated by Bc (9.52 tons ha-1) and/or Si (300 mg L-1) under different irrigation regimes (100, 75, and 50% of crop evapotranspiration). Catalase (CAT) and peroxidase (POD) activity; relative water content, water, and osmotic potential; leaf area per plant and yield attributes; and chlorophyll (Chl) content, Chla/chlorophyllidea (Chlida), and Chlb/Chlidb were considerably reduced within the drought condition. On the other hand, oxidative biomarkers, as well as organic and antioxidant solutes, were increased under drought, associated with membrane dysfunction, superoxide dismutase (SOD) activation, and osmotic adjustment (OA) capacity as well as a hyperaccumulation of porphyrin intermediates. Supplementation of Bc and Si lessens the detrimental impacts of drought on several plant metabolic processes associated with increasing leaf area and yield attributes. Their application under normal or drought conditions significantly elicited the accumulation of organic and antioxidant solutes as well as the activation of antioxidant enzymes, followed by lessening the formation of free radical oxygen and mitigating oxidative injuries. Moreover, their application maintained water status and OA capacity. Si and/or Bc treatment reduced protoporphyrin, magnesium-protoporphyrin, and protochlorophyllide while increasing Chla and Chlb assimilation and boosting the ratio of Chla/Chlida and Chlb/Chlidb, resulting in a rise in leaf area per plant and yield components following these modifications. These findings highlight the significance of Si and/or Bc as (a) stress-signaling molecule(s) in regulating defensive systems in drought-affected borage plants by boosting antioxidant aptitude, regulating water status, and accelerating chlorophyll assimilation, thus leading to increasing leaf area and productivity.

4.
Phytomedicine ; 100: 154069, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35364560

RESUMEN

BACKGROUND: Cardiovascular diseases (CVDs) are a significant cause of morbidity and death in the current world, posing a challenge to both developing and industrialized nation's health systems. Citrullus lanatus (Thunb.) Matsum. & Nakai. seeds have long been utilized to supplement and enhance health and treat cardiovascular illnesses. However, its treatments for CVDs are still unknown. More research is required to fully comprehend the impact of C. lanatus seeds on vasorelaxation and myocardial infractions. PURPOSE: Therefore, an integrated metabolomics profiling technique was used to investigate possible pathways of C. lanatus in isoproterenol (ISO)-induced myocardial infarction (MI). Isoproterenol causes long-term cardiac hypertrophy by causing cardiomyocyte compensatory loss, eventually leading to heart failure. METHODS: In vitro models of vasoconstriction, atrium, and in vivo models of invasive blood pressure measurement and isoproterenol (ISO) induced cardiac hypertrophy in rats were used to understand underlying mechanistic by LC-MS/MS based dynamic metabolomics analysis of the serum and heart samples to be investigated the effect of ethanolic extract of C. lanatus (Cl.EtOH). RESULTS: Cl.EtOH exhibited vasorelaxant, negative chronotropic, and inotropic effects in in-vitro models whereas, a potent hypotensive effect was observed in normotensive rats. The Cl.EtOH protected the animals from ISO-induced myocardial infarction (MI) with therapeutic interventions in left ventricular thickness, cardiomyocyte hypertrophy, mRNA gene expression, biochemical assays, and metabolomic profiling of serum and heart tissues. CONCLUSIONS: For the first time, our study confirmed that C. lanatus seeds (Cl.EtOH) possess significant antihypertensive and prevent ISO-induced myocardial infarction. These findings comprehensively demonstrated mechanistic insights of Cl.EtOH in vasorelaxation and myocardial infarction. The current study provides evidence for further mechanistic studies and the development of C. lanatus seeds as a potential therapeutic intervention for patients with cardiovascular disorders.


Asunto(s)
Citrullus , Infarto del Miocardio , Animales , Cardiomegalia/tratamiento farmacológico , Cromatografía Liquida , Etanol/efectos adversos , Humanos , Isoproterenol/toxicidad , Metabolómica , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos , Extractos Vegetales/uso terapéutico , Ratas , Semillas , Espectrometría de Masas en Tándem , Vasodilatadores/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA