Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(14): 4459-4469, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37266583

RESUMEN

Diabetes is a chronic disease that affects several organs and can be treated using phytochemicals found in medicinal plants. Gymnema sylvestre (Asclepiadaceae) is one such medicinal plant rich in anti-diabetic properties. The plant is commonly known as madhunashini in Sanskrit because of its ability to cure diabetes (sugar). Gymnemic acid (GA) is a phytochemical (a triterpenoid saponin) responsible for the herb's main pharmacological activity. This secondary metabolite has a lot of potential as a phytochemical with pharmacological properties including nephroprotection, hypoglycemia, antioxidant, antimicrobial, and anti-inflammatory. Gymnema has acquired a lot of popularity in recent years due to its low side effects and high efficacy in healing diabetes, which has led to overexploitation by pharmaceutical enterprises for its biomass in the wild for the purification of gymnemic acid. Modern biotechnological techniques involving the establishment of cell and organ cultures from G. sylvestre will assist us in fulfilling the need for gymnemic acid production. The present review provides insights on the establishment of cell and organ cultures for the production of a potent antidiabetic molecule gymnemic acid. Further, the review also delves into the intricacies of the different strategies for improved production of gymnemic acid using various elicitors. There is huge potential for sustainable production of gymnemic acid which could be met by establishment of bioreactor scale production. Understanding and engineering the biosynthetic pathway could also lead to improved GA production. KEY POINTS: • Gymnemic acid is one of the potential anti-diabetic molecules from madhunashini • Cell and organ culture offers potential approach for gymnemic acid production • Elicitation strategies have improved the gymnemic acid production.


Asunto(s)
Diabetes Mellitus , Gymnema sylvestre , Plantas Medicinales , Saponinas , Triterpenos , Gymnema sylvestre/química , Gymnema sylvestre/metabolismo , Plantas Medicinales/química , Extractos Vegetales/farmacología , Saponinas/metabolismo , Diabetes Mellitus/tratamiento farmacológico
2.
Molecules ; 28(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36677967

RESUMEN

A number of phytochemicals have been identified as promising drug molecules against a variety of diseases using an in-silico approach. The current research uses this approach to identify the phyto-derived drugs from Andrographis paniculata (Burm. f.) Wall. ex Nees (AP) for the treatment of diphtheria. In the present study, 18 bioactive molecules from Andrographis paniculata (obtained from the PubChem database) were docked against the diphtheria toxin using the AutoDock vina tool. Visualization of the top four molecules with the best dockscore, namely bisandrographolide (-10.4), andrographiside (-9.5), isoandrographolide (-9.4), and neoandrographolide (-9.1), helps gain a better understanding of the molecular interactions. Further screening using molecular dynamics simulation studies led to the identification of bisandrographolide and andrographiside as hit compounds. Investigation of pharmacokinetic properties, mainly ADMET, along with Lipinski's rule and binding affinity considerations, narrowed down the search for a potent drug to bisandrographolide, which was the only molecule to be negative for AMES toxicity. Thus, further modification of this compound followed by in vitro and in vivo studies can be used to examine itseffectiveness against diphtheria.


Asunto(s)
Andrographis , Corynebacterium diphtheriae , Difteria , Diterpenos , Andrographis paniculata , Andrographis/química , Diterpenos/farmacología , Diterpenos/química , Extractos Vegetales/farmacología , Fitoquímicos/farmacología
3.
Plants (Basel) ; 11(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36365394

RESUMEN

Chamomile (Matricariarecutita L.) is one of the most important medicinal plants with various applications. The flowers and flower heads are the main organs inthe production of essential oil. The essential improvement goals of chamomile are considered to be high flower yield and oil content, as well asthe suitability for mechanical harvesting. The present study aimed to improve the flower yield, oil content and mechanical harvestability of German chamomile via chemical and physical mutagens. Three German chamomile populations (Fayum, Benysuif and Menia) were irradiated with 100, 200, 300 and 400 Gray doses of gamma rays, as well as chemically mutagenized using 0.001, 0.002 and 0.003 mol/mL of sodium azide for 4 h. The two mutagens produced a wide range of changes in the flowers' shape and size. At M3 generation, 18 mutants (11 from gamma irradiation and 7 from sodium azide mutagenization) were selected and morphologically characterized. Five out of eighteen mutants were selected for morphological and chemical characterization for oil content, oil composition and oil quality in M4 generation. Two promising mutants, F/LF5-2-1 and B/HNOF 8-4-2, were selected based on their performance in most studied traits during three generations, as well as the high percentage of cut efficiency and a homogenous flower horizon, which qualify them as suitable candidates for mechanical harvesting. The two mutants are late flowering elite mutants; the F/LF5-2-1 mutant possessed the highest oil content (1.77%) and number of flowers/plant (1595), while the second promising B/HNOF 8-4-2 mutant hada high oil content (1.29%) and chamazulene percentage (13.98%) compared to control plants. These results suggest that the B/HNOF 8-4-2 and F/LF5-2-1 mutants could be integrated as potential parents into breeding programs for a high number of flowers, high oil content, oil composition and oil color traits for German chamomile improvement.

4.
Front Plant Sci ; 13: 1047410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36733604

RESUMEN

Medicinal plants, an important source of herbal medicine, are gaining more demand with the growing human needs in recent times. However, these medicinal plants have been recognized as one of the possible sources of heavy metal toxicity in humans as these medicinal plants are exposed to cadmium-rich soil and water because of extensive industrial and agricultural operations. Cadmium (Cd) is an extremely hazardous metal that has a deleterious impact on plant development and productivity. These plants uptake Cd by symplastic, apoplastic, or via specialized transporters such as HMA, MTPs, NRAMP, ZIP, and ZRT-IRT-like proteins. Cd exerts its effect by producing reactive oxygen species (ROS) and interfere with a range of metabolic and physiological pathways. Studies have shown that it has detrimental effects on various plant growth stages like germination, vegetative and reproductive stages by analyzing the anatomical, morphological and biochemical changes (changes in photosynthetic machinery and membrane permeability). Also, plants respond to Cd toxicity by using various enzymatic and non-enzymatic antioxidant systems. Furthermore, the ROS generated due to the heavy metal stress alters the genes that are actively involved in signal transduction. Thus, the biosynthetic pathway of the important secondary metabolite is altered thereby affecting the synthesis of secondary metabolites either by enhancing or suppressing the metabolite production. The present review discusses the abundance of Cd and its incorporation, accumulation and translocation by plants, phytotoxic implications, and morphological, physiological, biochemical and molecular responses of medicinal plants to Cd toxicity. It explains the Cd detoxification mechanisms exhibited by the medicinal plants and further discusses the omics and biotechnological strategies such as genetic engineering and gene editing CRISPR- Cas 9 approach to ameliorate the Cd stress.

5.
Methods Mol Biol ; 1637: 319-332, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28755356

RESUMEN

The health benefits of dates arise from their content of phytochemicals, known for having pharmacological properties, including flavonoids, carotenoids, phenolic acids, sterols, procyanidins, and anthocyanins. In vitro cell culture technology has become an attractive means for the production of biomass and bioactive compounds. This chapter describes step-by-step procedures for the induction and proliferation of callus from date palm offshoots on Murashige and Skoog (MS) medium supplemented with plant growth regulators. Subsequently cell suspension cultures are established for optimum biomass accumulation, based on the growth curve developed by packed cell volume as well as fresh and dry weights. The highest production of biomass occurs at the 11th week after culturing. Moreover, this chapter describes methodologies for the extraction and analysis of secondary metabolites of date palm cell suspension cultures using high-performance liquid chromatography (HPLC). The optimum level of catechin, caffeic acid, apigenin, and kaempferol from the cell suspension cultures establishes after the 11th and 12th weeks of culture. This protocol is useful for scale-up production of secondary metabolites from date palm cell suspension cultures.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Phoeniceae/citología , Metabolismo Secundario , Apigenina/análisis , Biomasa , Ácidos Cafeicos/análisis , Catequina/análisis , Cromatografía Líquida de Alta Presión , Quempferoles/análisis , Phoeniceae/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA