Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Poult Sci ; 102(12): 103116, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37844526

RESUMEN

One of the most intriguing areas of research and innovation in the animal production and food sector recently has been designed-enriched products. These items are regarded as functional foods because they feature components that have advantageous physiological impacts on human health. In the production of poultry, designed eggs constitute a significant category of functional foods. The present study hypothesized that adding different kinds of oils to quail diets will help produce designer eggs rich in omega-3 and 6 fatty acids in addition to enhancing productive performance. So, this study examined how linseed (flaxseed) and canola oils with various levels can affect lipid metabolism, immune function, and the amount of n-3 polyunsaturated fatty acids (n-3 PUFA) in Japanese quail eggs. This work was conducted using 3 different vegetable oils (sunflower, linseed, and canola oils) and 3 different antioxidant supplements (0, 250 mg vitamin E/kg feed, and 1,000 mg ginger/kg feed) in a 3 × 3 factorial experiment. When linseed or canola oil was added to the diet, the number of fatty acids in the egg yolks of Japanese quail layers fell by (12.7 and 18.9%) and (41.4 and 24.6%), respectively. The amounts of saturated and monounsaturated fatty acids in total eggs fell by 21.9 and 14.6% and 24.5 and 15.8%, respectively, at 20 wk of age. However, when linseed and canola oil were added to the diet, the sum n-3 PUFA content in the egg yolk of Japanese quail-laying hens was noticeably raised at 15 and 20 wk of age. At 15 and 20 wk of age, the same groups' total n-6 PUFA content considerably increased compared to the group that did not receive flaxseed. In conclusion, during the laying period of Japanese quail, linseed oil, canola oil, vitamin E, or ginger positively affected productivity, blood hematology, constituents, resistance, lipid digestion system, and antioxidative properties in serum and egg yolk.


Asunto(s)
Ácidos Grasos Omega-3 , Lino , Humanos , Animales , Ácidos Grasos Omega-3/metabolismo , Lino/metabolismo , Aceite de Linaza/metabolismo , Aceite de Brassica napus/metabolismo , Codorniz/metabolismo , Coturnix/metabolismo , Metabolismo de los Lípidos , Pollos/fisiología , Óvulo/metabolismo , Yema de Huevo/metabolismo , Dieta/veterinaria , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos/metabolismo , Vitamina E/metabolismo , Alimentación Animal/análisis
2.
Front Chem ; 10: 917831, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118313

RESUMEN

Nanotechnology is a fast-expanding area with a wide range of applications in science, engineering, health, pharmacy, and other fields. Among many techniques that are employed toward the production of nanoparticles, synthesis using green technologies is the simplest and environment friendly. Nanoparticles produced from plant extracts have become a very popular subject of study in recent decades due to their diverse advantages such as low-cost synthesis, product stability, and ecofriendly protocols. These merits have prompted the development of nanoparticles from a variety of sources, including bacteria, fungi, algae, proteins, enzymes, etc., allowing for large-scale production with minimal contamination. However, nanoparticles obtained from plant extracts and phytochemicals exhibit greater reduction and stabilization and hence have proven the diversity of properties, like catalyst/photocatalyst, magnetic, antibacterial, cytotoxicity, circulating tumor deoxy ribo nucleic acid (CT-DNA) binding, gas sensing, etc. In the current scenario, nanoparticles can also play a critical role in cleaning wastewater and making it viable for a variety of operations. Nano-sized photocatalysts have a great scope toward the removal of large pollutants like organic dyes, heavy metals, and pesticides in an eco-friendly and sustainable manner from industrial effluents. Thus, in this review article, we discuss the synthesis of several metal nanoparticles using diverse plant extracts, as well as their characterization via techniques like UV-vis (ultraviolet-visible), XRD (X-ray diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), FTIR (Fourier transform infrared spectroscopy), etc., and catalytic activity on various hazardous systems.

3.
Biomed Res Int ; 2022: 5347224, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928915

RESUMEN

Phytopathogenic fungi are serious threats in the agriculture sector especially in fruit and vegetable production. The use of plant essential oil as antifungal agents has been in practice from many years. Plant essential oils (PEOs) of Cuminum cyminum, Trachyspermum ammi, Azadirachta indica, Syzygium aromaticum, Moringa oleifera, Mentha spicata, Eucalyptus grandis, Allium sativum, and Citrus sinensis were tested against Fusarium oxysporum. Three phase trials consist of lab testing (MIC and MFC), field testing (seed treatment and foliar spray), and computer-aided fungicide design (CAFD). Two concentrations (25 and 50 µl/ml) have been used to asses MIC while MFC was assessed at four concentrations (25, 50, 75, and 100 µl/ml). C. sinensis showed the largest inhibition zone (47.5 and 46.3 m2) for both concentrations. The lowest disease incidence and disease severity were recorded in treatments with C. sinensis PEO. Citrus sinensis that qualified in laboratory and field trials was selected for CAFD. The chemical compounds of C. sinensis PEO were docked with polyketide synthase beta-ketoacyl synthase domain of F. oxysporum by AutoDock Vina. The best docked complex was formed by nootkatone with -6.0 kcal/mol binding affinity. Pharmacophore of the top seven C. sinensis PEO compounds was used for merged pharmacophore generation. The best pharmacophore model with 0.8492 score was screened against the CMNP database. Top hit compounds from screening were selected and docked with polyketide synthase beta-ketoacyl synthase domain. Four compounds with the highest binding affinity and hydrogen bonding were selected for confirmation of lead molecule by doing MD simulation. The polyketide synthase-CMNPD24498 showed the highest stability throughout 80 ns run of MD simulation. CMNPD24498 (FW054-1) from Verrucosispora was selected as the lead compound against F. oxysporum.


Asunto(s)
Fungicidas Industriales , Fusarium , Aceites Volátiles , Antifúngicos/farmacología , Fungicidas Industriales/farmacología , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Aceites Volátiles/farmacología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Sintasas Poliquetidas
4.
Artículo en Inglés | MEDLINE | ID: mdl-36034950

RESUMEN

Phytochemicals have been shown to possess multiple bioactives and have been reported to showcase many medicinal effects. A similar kind of evaluation of phytoconstituents for their antimicrobial action has been reported, based on in vitro and in silico data. The goal of the research was to explore bioactive phytoconstituents of Eclipta alba leaf for antimicrobial activity. The antimicrobial activity was validated by both molecular docking and antimicrobial assay. Bioactive metabolites were identified using GC-MS. The antimicrobial and antimycobacterial activity of Eclipta alba leaves was investigated using the Kirby-Bauer well diffusion method and the rapid culture-MGIT™ DST method against a variety of human pathogens, as well as Mycobacterium tuberculosis (H37Rv) and Mycobacterium tuberculosis bacteria resistant to isoniazid and rifampicin. Eclipta alba's GC-MS studies confirmed the detection of 17 bioactive constituents. The extract demonstrates the highest antibacterial activity against Escherichia coli (sensitive), Pseudomonas aeruginosa (sensitive) and methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa susceptible and MRSA (sensitive) with zone of inhibition of 27 mm, 24 mm, and 32 mm respectively. The extract showed no effect on Mycobacterium tuberculosis (H37Rv) and Mycobacterium tuberculosis bacteria resistant to isoniazid and rifampicin in antimycobacterial activity testing. Molecular docking investigation revealed that three compounds (phthalic acid, isobutyl octadecyl ester, hexadecanoic acid, 1(hydroxymethyl)1,2-ethanediylester, and 2,myristynoyl pantetheine) have generated the best results in terms of binding energies and significant interactions with key residues of target protein 3-hydroxydecanoyl-acyl carrier protein dehydratase (FabA) and confirm its activity as antimicrobial inhibitors. These two-dimensional plots show significant protein-ligand binding interactions (van der Waals interactions, hydrogen bond, alkyl, and Pi-alkyl interactions). ADMET (absorption, distribution, metabolism, excretion, and toxicity) results additionally support the drug-likeness characteristics of concluded potential compounds. The experimental and computational results demonstrated that methanolic extract of Eclipta alba leaves had antimicrobial effects for specific infections due to the presence of phytochemical compounds.

5.
Artículo en Inglés | MEDLINE | ID: mdl-35722152

RESUMEN

Diabetes mellitus (DM) is a very common metabolic disorder/disease. The deterioration of ß-cells by autoimmune system is the hallmark of this disease. Thioredoxin-Interacting Protein (TXNIP) is responsible for ß-cells degradation by T-cells in the pancreas. This protein had been declared a good drug target for controlling DM. Lots of side effects have been reported as a result of long-time consumption of conventional antidiabetic drugs. The development of new and effective drugs with the minimal side effects needs time. TXNIP was selected as a target for Computer-Aided Drug Design. The antidiabetic fungal metabolite compounds were selected from the literature. The compounds were screened for their drug-likeness properties by DruLiTo and DataWarior tools. Twenty-two drug-like fungal compounds were subjected to Quantitative Structure-Activity Relationship (QSAR) analysis by using CheS-Mapper 2.0. The lowest (0.01) activity cliff was found for three compounds: Pinazaphilone A, Pinazaphilone B, and Chermesinone A. The highest value for apol (81.76) was shown by Asperphenamate, while Albonoursin and Sterenin L showed highest score (40.66) for bpol. The lowest value (0.46) for fractional molecular frame (FMF) was calculated for Pinazaphilone A and Pinazaphilone B. TPSA for Pinazaphilone A and Pinazaphilone B was 130.51 Å2. log P < 5 was observed for all the twenty-two compounds. Molecular docking of fungal compounds with TXNIP was done by AutoDock Vina. The binding energy for complexes ranged between -9.2 and -4.6 kcal/mol. Four complexes, TXNIP-Pinazaphilone A, TXNIP-Pinazaphilone B, TXNIP-Asperphenamate, and TXNIP-Sterenin L, were selected for MD simulation to find out the best lead molecule. Only one complex, TXNIP-Pinazaphilone B, showed a stable conformation throughout the 80 ns run of MD simulation. Pinazaphilone B derived from the Penicillium species fungi was selected as the lead molecule for development of antidiabetic drug having the least side effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA