Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Genet ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430447

RESUMEN

Helicobacter pylori stands as a significant risk factor for both peptic and stomach ulcers. Their resistance to the highly acidic host environment primarily stems from their capability to produce urease, an enzyme that rapidly converts urea into NH3 and CO2. These byproducts are crucial for the bacterium's survival under such harsh conditions. Given the pivotal role of medicinal plants in treating various ailments with minimal side effects, there is an urgent need for a natural drug that can effectively eliminate H. pylori by inhibiting urease. Hence, the current study aims to identify the most potent urease inhibitor among the natural compounds found in Middle Eastern medicinal plants, taking into consideration factors such as optimal affinity, drug-like properties, pharmacokinetic characteristics, and thermodynamic attributes. In total, 5599 ligand conformers from 151 medicinal plants were subjected to docking against the urease's active site. The top-ranking natural compounds, as determined by their high docking scores, were selected for further analysis. Among these compounds, D-glucosamine (PubChem code 439,213) exhibited the most interactions with the crucial amino acid residues in the urease's active site. Furthermore, D-glucosamine demonstrated superior absorption, distribution, metabolism, excretion, and toxicity properties compared to other top-ranked candidates. Molecular dynamics simulations conducted over 100 nanoseconds revealed stable root mean square deviations and fluctuations of the protein upon complexation with D-glucosamine. Additionally, the radius of gyration and solvent-accessible surface area values for the D-glucosamine-urease complex were notably lower than those observed in other typical urease-inhibitor complexes. In conclusion, this study provides valuable insights into the potential development of D-glucosamine as a novel urease inhibitor. This promising compound holds the potential to serve as an effective drug for combating H. pylori infections in the near future.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2021-2053, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37837473

RESUMEN

The Oldenlandia genus comprises approximately 240 species of plants, yet only a limited number of these have been investigated for their chemical composition and medicinal properties. These species contain a wide range of compounds such as iridoids, anthraquinones, triterpenes, phytosterols, flavonoids, anthocyanidins, vitamins, essential oils, phenolic acids, and coumarins. These diverse phytochemical profiles underscore the pharmacological potential of Oldenlandia plants for various medical purposes. Among other chemical constituents, ursolic acid stands out as the most important active compound in Oldenlandia, owing to its proven anticancer, anti-inflammatory, antimicrobial, and hepatoprotective properties. The evaluation of Oldenlandia's pharmacological prospects indicates that the holistic utilization of the entire plant yields the most significant effects. Oldenlandia diffusa showcases anticancer and anti-inflammatory capabilities attributed to its varying constituents. Across a broad spectrum of pharmacological capacities, anticancer research predominates, constituting the majority of medical uses. Oldenlandia diffusa emerges as a standout for its remarkable anticancer effects against diverse malignancies. Antioxidant applications follow, with O. corymbosa demonstrating potent antioxidant properties alongside O. umbellata and O. diffusa. Subsequent priority lies in anti-inflammatory studies, wherein O. diffusa exhibits noteworthy efficacy, trailed by O. corymbosa also takes the lead in antimicrobial activity, with O. umbellata as a strong contender. Additional investigation is essential to ascertain the relative significance of these species in various pharmacological applications. This comprehensive assessment underscores the multifaceted potential of Oldenlandia as a versatile herbal resource, offering diverse pharmacological capacities. The call for sustained exploration and research remains essential to unlock the full extent of Oldenlandia's medicinal benefits.


Asunto(s)
Antiinfecciosos , Oldenlandia , Oldenlandia/química , Antioxidantes , Iridoides , Fitoquímicos , Antiinflamatorios , Extractos Vegetales/farmacología
3.
J Biomol Struct Dyn ; 41(6): 2355-2367, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35067202

RESUMEN

Main protease (Mpro) is a critical enzyme in the life cycle of severe acute respiratory syndrome Coronavirus -2 (SARS-CoV-2). Due to its essential role in the maturation of the polyproteins, the necessity to inhibit Mpro is one of the essential means to prevent the outbreak of COVID-19. In this context, this study was conducted on the natural compounds of medicinal plants that are commonly available in the Middle East to find out the most potent one to inhibit Mpro with the best bioavailability and druglikeness properties. A total of 3392 compounds of sixty-six medicinal plants were retrieved from PubChem database and docked against Mpro. Thirty compounds with the highest docking scores with Mpro were chosen for further virtual screening. Variable druglikeness and toxicity potentials of these compounds were evaluated using SwissADME and Protox servers respectively. Out of these virtually screened compounds, artecanin was predicted to exhibit the most favourable druglikeness potentials, accompanied by no predicted hepatoxicity, carcinogenicity, mutagenicity, and cytotoxicity. Molecular dynamics (MD) simulations showed that Mpro-artecanin complex exhibited comparable stability with that observed in the ligand-free Mpro. This study revealed for the first time that artecanin from Laurus nobilis provided a novel static and dynamic inhibition for Mpro with excellent safety, oral bioavailability, and pharmacokinetic profile. This study suggested the ability of artecanin to be used as a potential natural inhibitor that can be used to block or at least counteract the SARS-CoV-2 invasion.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Laurus , SARS-CoV-2 , Proteasas 3C de Coronavirus , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , Simulación del Acoplamiento Molecular
4.
Comput Biol Med ; 141: 105155, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34942397

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is the first target of SARS-CoV-2 and a key functional host receptor through which this virus hooks into and infects human cells. The necessity to block this receptor is one of the essential means to prevent the outbreak of COVID-19. This study was conducted to determine the most eligible natural compound to suppress ACE2 to counterfeit its interaction with the viral infection. To do this, the most known compounds of sixty-six Iraqi medicinal plants were generated and retrieved from PubChem database. After preparing a library for Iraqi medicinal plants, 3663 unique ligands' conformers were docked to ACE2 using the GLIDE tool. Results found that twenty-three compounds exhibited the highest binding affinity with ACE2. The druglikeness and toxicity potentials of these compounds were evaluated using SwissADME and Protox servers respectively. Out of these virtually screened twenty-three compounds, epicatechin and kempferol were predicted to exert the highest druglikeness and lowest toxicity potentials. Extended Molecular dynamics (MD) simulations showed that ACE2-epicatechin complex exhibited a slightly higher binding stability than ACE2-kempferol complex. In addition to the well-known ACE2 inhibitors that were identified in previous studies, this study revealed for the first time that epicatechin from Hypericum perforatum provided a better static and dynamic inhibition for ACE2 with highly favourable pharmacokinetic properties than the other known ACE2 inhibiting compounds. This study entailed the ability of epicatechin to be used as a potent natural inhibitor that can be used to block or at least weaken the SARS-CoV-2 entry and its subsequent invasion. In vitro experiments are required to validate epicatechin effectiveness against the activity of the human ACE2 receptor.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Antivirales/farmacología , Catequina , SARS-CoV-2 , Internalización del Virus/efectos de los fármacos , COVID-19 , Catequina/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA