Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plants (Basel) ; 13(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38592859

RESUMEN

Wild fruits and vegetables (WFVs) have been vital to local communities for centuries and make an important contribution to daily life and income. However, traditional knowledge of the use of wild fruits is at risk of being lost due to inadequate documentation. This study aimed to secure this knowledge through intermittent field visits and a semi-structured questionnaire. Using various ethnobotanical data analysis tools and SPSS (IBM 25), this study identified 65 WFV species (52 genera and 29 families). These species, mostly consumed as vegetables (49%) or fruits (43%), were predominantly herbaceous (48%) in wild and semi-wild habitats (67%). 20 WFVs were known to local communities (highest RFC), Phoenix sylvestris stood out as the most utilized species (highest UV). Surprisingly, only 23% of the WFVs were sold at markets. The survey identified 21 unique WFVs that are rarely documented for human consumption in Pakistan (e.g., Ehretia obtusifolia, Euploca strigosa, Brassica juncea, Cleome brachycarpa, Gymnosporia royleana, Cucumis maderaspatanus, Croton bonplandianus, Euphorbia prostrata, Vachellia nilotica, Pongamia pinnata, Grewia asiatica, Malvastrum coromandelianum, Morus serrata, Argemone mexicana, Bambusa vulgaris, Echinochloa colonum, Solanum virginianum, Physalis angulata, Withania somnifera, Zygophyllum creticum, and Peganum harmala), as well as 14 novel uses and five novel edible parts. Despite their ecological importance, the use of WFVs has declined because local people are unaware of their cultural and economic value. Preservation of traditional knowledge through education on conservation and utilization could boost economies and livelihoods in this and similar areas worldwide.

2.
Ecotoxicol Environ Saf ; 256: 114866, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37023649

RESUMEN

The multifarious problems created by arsenic (As), for collective environment and human health, serve a cogent case for searching integrative agricultural approaches to attain food security. Rice (Oryza sativa L.) acts as a sponge for heavy metal(loid)s accretion, specifically As, due to anaerobic flooded growth conditions facilitating its uptake. Acclaimed for their positive impact on plant growth, development and phosphorus (P) nutrition, 'mycorrhizas' are able to promote stress tolerance. Albeit, the metabolic alterations underlying Serendipita indica (S. indica; S.i) symbiosis-mediated amelioration of As stress along with nutritional management of P are still understudied. By using biochemical, RT-qPCR and LC-MS/MS based untargeted metabolomics approach, rice roots of ZZY-1 and GD-6 colonized by S. indica, which were later treated with As (10 µM) and P (50 µM), were compared with non-colonized roots under the same treatments with a set of control plants. The responses of secondary metabolism related enzymes, especially polyphenol oxidase (PPO) activities in the foliage of ZZY-1 and GD-6 were enhanced 8.5 and 12-fold, respectively, compared to their respective control counterparts. The current study identified 360 cationic and 287 anionic metabolites in rice roots, and the commonly enriched pathway annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was biosynthesis of phenylalanine, tyrosine and tryptophan, which validated the results of biochemical and gene expression analyses associated with secondary metabolic enzymes. Particularly under As+S.i+P comparison, both genotypes exhibited an upregulation of key detoxification and defense related metabolites, including fumaric acid, L-malic acid, choline, 3,4-dihydroxybenzoic acid, to name a few. The results of this study provided the novel insights into the promising role of exogenous P and S. indica in alleviating As stress.


Asunto(s)
Arsénico , Oryza , Fósforo , Contaminantes del Suelo , Humanos , Arsénico/toxicidad , Cromatografía Liquida , Oryza/metabolismo , Oryza/microbiología , Fósforo/análisis , Raíces de Plantas/metabolismo , Metabolismo Secundario , Espectrometría de Masas en Tándem , Contaminantes del Suelo/toxicidad
3.
Molecules ; 27(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35164259

RESUMEN

The use of natural products as therapeutic agents is rapidly growing recently. In the current study, we investigated the protective effects of green tea supplementation on lead-induced toxicity in mice. Forty albino mice were divided into four groups as follows: A: control group; B: green tea receiving group; C: lead-intoxicated group; and D: lead-intoxicated group supplemented with green tea. At the end of the experiment, the animals were tested for neurobehavioral and biochemical alterations. Green tea was analyzed through Gas Chromatography-Mass Spectrometry (GC/MS) analysis. We found that supplementation with green tea ameliorated the lead-associated increase in body weight and blood glucose. Green tea supplementation also changed the blood picture that was affected due to lead toxicity and ameliorated lead-induced dyslipidemia. The group of mice that were supplemented with green tea has shown positive alterations in locomotory, anxiety, memory, and learning behaviors. The GC/MS analysis revealed many active ingredients among which the two most abundant were caffeine and 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester. We concluded that green tea supplementation has several positive effects on the lead-induced neurotoxicity in mice and that these effects may be attributed to its main two active ingredients.


Asunto(s)
Intoxicación del Sistema Nervioso por Plomo/prevención & control , Plomo/toxicidad , , Animales , Conducta Animal/efectos de los fármacos , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Encéfalo/metabolismo , Dislipidemias/inducido químicamente , Dislipidemias/prevención & control , Cromatografía de Gases y Espectrometría de Masas/métodos , Plomo/sangre , Plomo/metabolismo , Ratones
4.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885744

RESUMEN

A worldwide increase in the incidence of fungal infections, emergence of new fungal strains, and antifungal resistance to commercially available antibiotics indicate the need to investigate new treatment options for fungal diseases. Therefore, the interest in exploring the antifungal activity of medicinal plants has now been increased to discover phyto-therapeutics in replacement to conventional antifungal drugs. The study was conducted to explore and identify the mechanism of action of antifungal agents of edible plants, including Cinnamomum zeylanicum, Cinnamomum tamala, Amomum subulatum, Trigonella foenumgraecum, Mentha piperita, Coriandrum sativum, Lactuca sativa, and Brassica oleraceae var. italica. The antifungal potential was assessed via the disc diffusion method and, subsequently, the extracts were assessed for phytochemicals and total antioxidant activity. Potent polyphenols were detected using high-performance liquid chromatography (HPLC) and antifungal mechanism of action was evaluated in silico. Cinnamomum zeylanicum exhibited antifungal activity against all the tested strains while all plant extracts showed antifungal activity against Fusarium solani. Rutin, kaempferol, and quercetin were identified as common polyphenols. In silico studies showed that rutin displayed the greatest affinity with binding pocket of fungal 14-alpha demethylase and nucleoside diphosphokinase with the binding affinity (Kd, -9.4 and -8.9, respectively), as compared to terbinafine. Results indicated that Cinnamomum zeylanicum and Cinnamomum tamala exert their antifungal effect possibly due to kaempferol and rutin, respectively, or possibly by inhibition of nucleoside diphosphokinase (NDK) and 14-alpha demethylase (CYP51), while Amomum subulatum and Trigonella foenum graecum might exhibit antifungal potential due to quercetin. Overall, the study demonstrates that plant-derived products have a high potential to control fungal infections.


Asunto(s)
Antifúngicos/química , Productos Biológicos/química , Micosis/tratamiento farmacológico , Polifenoles/química , Amomum/química , Antifúngicos/farmacología , Antioxidantes/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Brassica/química , Cinnamomum zeylanicum/química , Coriandrum/química , Lactuca/química , Mentha piperita/química , Micosis/microbiología , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Comestibles/química , Plantas Medicinales/química , Polifenoles/aislamiento & purificación , Polifenoles/farmacología , Quercetina/química , Quercetina/aislamiento & purificación , Quercetina/farmacología , Trigonella/química
5.
Environ Pollut ; 290: 117953, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34438168

RESUMEN

Hydrogen sulfide (H2S) has emerged as a potential gasotransmitter in plants with a beneficial role in stress amelioration. Despite the various known functions of H2S in plants, not much information is available to explain the associative role of molybdenum (Mo) and hydrogen sulfide (H2S) signaling in plants under arsenic toxicity. In view to address such lacunae in our understanding of the integrative roles of these biomolecules, the present work attempts to decipher the roles of Mo and H2S in mitigation of arsenate (AsV) toxicity in faba bean (Vicia faba L.) seedlings. AsV-stressed seedlings supplemented with exogenous Mo and/or NaHS treatments (H2S donor) showed resilience to AsV toxicity manifested by reduction of apoptosis, reactive oxygen species (ROS) content, down-regulation of NADPH oxidase and GOase activity followed by upregulation of antioxidative enzymes in leaves. Fluorescent localization of ROS in roots reveals changes in its intensity and spatial distribution in response to MO and NaHS supplementation during AsV stress. Under AsV toxicity conditions, seedlings subjected to Mo + NaHS showed an increased rate of nitrogen metabolism evident by elevation in nitrate reductase, nitrite reductase and glutamine synthetase activity. Furthermore, the application of Mo and NaHS in combination positively upregulates cysteine and hydrogen sulfide biosynthesis in the absence and presence of AsV stress. Mo plus NaHS-supplemented seedlings exposed to AsV toxicity showed a substantial reduction in oxidative stress manifested by reduced ELKG, lowered MDA content and higher accumulation of proline in leaves. Taken together, the present findings provide substantial evidence on the synergetic role of Mo and H2S in mitigating AsV stress in faba bean seedlings. Thus, the application of Mo and NaHS reveals their agronomic importance to encounter heavy metal stress for management of various food crops.


Asunto(s)
Arsénico , Sulfuro de Hidrógeno , Vicia faba , Arsénico/toxicidad , Cisteína , Molibdeno/toxicidad , Nitrógeno , Plantones
6.
Molecules ; 26(16)2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34443462

RESUMEN

Ajuga bracteosa Wall. ex Benth. is an endangered medicinal herb traditionally used against different ailments. The present study aimed to create new insight into the fundamental mechanisms of genetic transformation and the biological activities of this plant. We transformed the A. bracteosa plant with rol genes of Agrobacterium rhizogenes and raised the regenerants from the hairy roots. These transgenic regenerants were screened for in vitro antioxidant activities, a range of in vivo assays, elemental analysis, polyphenol content, and different phytochemicals found through HPLC. Among 18 polyphenolic standards, kaempferol was most abundant in all transgenic lines. Furthermore, transgenic line 3 (ABRL3) showed maximum phenolics and flavonoids content among all tested plant extracts. ABRL3 also demonstrated the highest total antioxidant capacity (8.16 ± 1 µg AAE/mg), total reducing power, (6.60 ± 1.17 µg AAE/mg), DPPH activity (IC50 = 59.5 ± 0.8 µg/mL), hydroxyl ion scavenging (IC50 = 122.5 ± 0.90 µg/mL), and iron-chelating power (IC50 = 154.8 ± 2 µg/mL). Moreover, transformed plant extracts produced significant analgesic, anti-inflammatory, anticoagulant, and antidepressant activities in BALB/c mice models. In conclusion, transgenic regenerants of A. bracteosa pose better antioxidant and pharmacological properties under the effect of rol genes as compared to wild-type plants.


Asunto(s)
Ajuga/química , Polifenoles/farmacología , Regeneración , Analgésicos/farmacología , Animales , Antiinflamatorios/farmacología , Anticoagulantes/farmacología , Antidepresivos/farmacología , Antioxidantes/análisis , Bioensayo , Compuestos de Bifenilo/química , Cromatografía Líquida de Alta Presión , Elementos Químicos , Flavonoides/análisis , Depuradores de Radicales Libres/química , Hidróxidos/química , Concentración 50 Inhibidora , Quelantes del Hierro/farmacología , Masculino , Ratones Endogámicos BALB C , Fenoles/análisis , Picratos/química , Plantas Modificadas Genéticamente , Regeneración/efectos de los fármacos
7.
Plant Physiol Biochem ; 159: 211-225, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33385704

RESUMEN

Present investigation reports the role of calcium (Ca2+) and hydrogen sulfide (H2S) crosstalk associated with Vigna radiata seedlings subjected to K+ deficient conditions under short-term (24 h) and long-term (72 h) NaCl stress. Perusal of the data reveals that under short-term NaCl stress an initial decline in K+ level led to the elevation in Ca2+ and H2S levels along with improvement in antioxidant system and reduction in reactive oxygen species (ROS) production. Under long-term NaCl stress a further decline in K+ content was deleterious that led to a lower K+/Na+ ratio. This was followed by reduction in antioxidant system along with excessive accumulation of ROS and methylglyoxal content, and increased membrane damage. However, supplementation of the seedling roots with Ca2+ enhanced biosynthesis of H2S through enhancing cysteine pool. The present findings suggest that synergistic action of Ca2+ and H2S induced the activity of H+-ATPase that created H+ gradient which in turn induced Na+/H+ antiport system that accelerated K+ influx and Na+ efflux. All of these together contributed to a higher K+/Na+ ratio, activation of antioxidative defense system, and maintenance of redox homeostasis and membrane integrity in Ca2+-supplemented stressed seedlings. Role of Ca2+ and H2S in the regulation of Na+/H+ antiport system was validated by the use of sodium orthovanadate (plasma membrane H+-ATPase inhibitor), tetraethylammonium chloride (K+ channel blocker), and amiloride (Na+/H+ antiporter inhibitor). Application of Ca2+-chelator EGTA (ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid) and H2S scavenger hypotaurine abolished the effect of Ca2+, suggesting the involvement of Ca2+ and H2S in the alleviation of NaCl stress. Moreover, use of EGTA and HT also substantiates the downstream functioning of H2S during Ca2+-mediated regulation of plant adaptive responses to NaCl stress. To sum up, present findings reveal the association of Ca2+ and H2S signaling in the regulation of ion homeostasis and antioxidant defense during K+-deficient NaCl stress.


Asunto(s)
Calcio , Sulfuro de Hidrógeno , Raíces de Plantas , Vigna , Antioxidantes/metabolismo , Calcio/metabolismo , Sulfuro de Hidrógeno/metabolismo , Transporte Iónico , Raíces de Plantas/fisiología , Potasio/metabolismo , Estrés Salino/fisiología , Cloruro de Sodio/farmacología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Vigna/fisiología
8.
Plant Physiol Biochem ; 156: 278-290, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32987258

RESUMEN

Hydrogen sulfide (H2S) and nitric oxide (NO) have been known to affect vast number of processes in plants under abiotic stresses. Also, calcium (Ca) works as a second messenger in plants, which underpins the abiotic stress-induced damage. However, the sequence of action of these signaling molecules against cadmium (Cd)-induced cellular oxidative damage remains unidentified. Therefore, we studied the synergistic actions and/or relationship of signaling molecules and Ca-dependent activation of tolerance mechanisms in Vigna radiata seedlings under Cd stress. The present study shows that exogenous Ca supplemented to Cd-stressed V. radiata seedlings reduced Cd accumulation and improved the activity of nitrate reductase, and L/D-cysteine desulfhydrase (LCD/DCD) that resulted in improved synthesis of NO and H2S content. Application of Ca also elevated the level of cysteine (Cys) by upregulating the activity of Cys-synthesizing enzymes serine acetyltransferase and O-acetylserine(thiol)lyase in Cd-stressed seedlings. Maintenance of Cys pool under Cd stress contributed to improved H2S content which together with Ca and NO improved antioxidant enzymes and components of ascorbate-glutathione (AsA-GSH) cycle. All these collectively regulated the activity of NADPH oxidase and glycolate oxidase, resulting in the inhibition of Cd-induced generation of reactive oxygen species. The elevated level of Cys also assisted the Cd-stressed seedlings in maintaining GSH pool which retained normal functioning of AsA-GSH cycle and led to enhanced content of phytochelatins coupled with reduced Cd content. The positive effect of these events manifested in an enhanced rate of photosynthesis, carbohydrate accumulation, and growth attributes of the plants. On the contrary, addition of NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], H2S scavenger HT (Hypotaurine) and Ca-chelator EGTA (Ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid) again developed a condition similar to stress and positive effect of the signaling molecules was abolished. The findings of the study postulate that Ca in association with NO and H2S mitigates Cd-induced impairment and enhances the tolerance of the V. radiata plants against Cd stress. The results of the study also substantiate that Ca acts both upstream as well as downstream of NO signals whereas, H2S acts downstream of Ca and NO during Cd-stress responses of the plants.


Asunto(s)
Cadmio/toxicidad , Calcio/farmacología , Sulfuro de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Vigna/metabolismo , Antioxidantes/metabolismo , Metabolismo de los Hidratos de Carbono , Glutatión/metabolismo , Estrés Oxidativo , Fotosíntesis
9.
Ecotoxicol Environ Saf ; 203: 110978, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32678757

RESUMEN

In this study, hydroponic experiments were conducted to elucidate mechanism(s) that are associated with differential effects of low (5 µM) and high (25 µM) dose of cadmium (Cd) stress in tomato. Furthermore, emphasis has also been focused on any involvement of endogenous hydrogen sulfide (H2S) in differential behaviour of low and high doses of Cd stress. At low dose of Cd, root growth i.e. root fresh weight, length and fitness did not significantly alter when compared to the control seedlings. Though at low dose of Cd, cellular accumulation of Cd was slightly increased but this was accompanied by higher endogenous H2S and phytochelatins, L-cysteine desulfhydrase (DES) activity, activities of glutathione biosynthetic and AsA-GSH cycle enzymes, and maintained redox status of ascorbate and glutathione. However, addition of hypotaurine (HT, a scavenger of H2S) resulted in greater toxicity, even at low dose of Cd, and these responses resembled with higher dose of Cd stress such as greater decline in root growth, endogenous H2S and phytochelatins, activities of DES, glutathione biosynthesis and AsA-GSH cycle enzymes, disturbed redox status of ascorbate and glutathione which collectively led to higher oxidative stress in tomato roots. Moreover, addition of HT with higher dose of Cd also further enhanced its toxicity. Collectively, the results showed that differential behaviour of low and high dose of Cd stress is mediated by differential regulation of biochemical attributes in which endogenous H2S has a crucial role.


Asunto(s)
Cadmio/toxicidad , Sulfuro de Hidrógeno/metabolismo , Fitoquelatinas/metabolismo , Raíces de Plantas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Solanum lycopersicum/efectos de los fármacos , Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-31239852

RESUMEN

Diabetes mellitus (DM) is a metabolic disease that can affect the central nervous system and behavioral traits in animals. Streptozotocin-induced diabetes is considered an autoimmune disease. The aim of the current study was to determine whether supplementation with the alcoholic extract of Avicennia marina leaves could improve diabetes-associated pathological changes. The animals were divided into four groups: a control group (A), an A. marina receiving nondiabetic group (B), a diabetic group (C), and a DM group orally supplemented with A. marina alcoholic leaf extract (D). The DM group of animals receiving the alcoholic extract of A. marina leaves had reduced blood glucose levels, improved blood picture, and organ functions. This group also showed improvement in locomotory behavior. The results of this study showed that supplementation with the alcoholic extract of A. marina leaves reduced oxidative stress and blood sugar levels, protected the liver, and improved the neurobehavioral changes associated with diabetes in mice. Introducing alcoholic leaf extract of A. marina to diabetic mice decreased inflammatory cells aggregation, vacuolation, and hemorrhage. Additionally, a positive effect of the alcoholic leaf extract on the histopathological changes was observed in the testicular tissue of treated mice.

11.
Ecotoxicol Environ Saf ; 180: 656-667, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31136876

RESUMEN

Owing to the active use of rare-earth elements in many areas, it is necessary to study their behavior in the environment and their biological impact on plants. Despite the role of melatonin and sulfur in plant growth, development and abiotic stress tolerance; it is still not clear how they have a strong regulatory influence and synergistic effect on growth, physiological and biochemical characteristics of plants under different environmental stresses. Therefore, this study highlights how melatonin and sulfur together potentially involved in a reversal of lanthanum-inhibited photosynthetic and growth responses in tomato seedlings. Here, we reported that seedlings grown in a medium containing 150 µM lanthanum exhibited increased overproduction of reactive oxygen species (ROS) and lipid peroxidation together with increased Chlorophyll degradation, and activity of chlorophyllase, proline dehydrogenase and glycolate oxidase (GOx), and decreased photosynthesis and growth. However, the application of melatonin and sulfur showed significant responses on tomato seedlings, although the response of their combined treatment was more effective by further increasing photosynthesis and growth under lanthanum toxicity. Melatonin supplied with sulfur suppressed ROS formation, lipid peroxidation and activity of GOx, and increased photosynthesis by upregulating activities of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase. Also, sulfur supplementation with melatonin to seedlings resulted in an elevation in the accumulation of Chl and proline by increasing δ-aminolevulinic acid and activity of δ-aminolevulinic acid dehydratase and Δ1-pyrroline-5-carboxylate synthetase activity. The administration of melatonin with sulfur substantially induced upregulation of enzymes (superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase) activities involved in the antioxidant system, thereby mitigating ROS-induced oxidative damage. Thus, this study provides strong evidence that melatonin and sulfur have strong regulatory influence and synergistic role in alleviating the adverse effect of lanthanum-toxicity by increasing photosynthesis and growth.


Asunto(s)
Contaminantes Ambientales/toxicidad , Lantano/toxicidad , Melatonina/farmacología , Solanum lycopersicum/efectos de los fármacos , Azufre/farmacología , Antioxidantes/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo
12.
Saudi J Biol Sci ; 25(7): 1393-1401, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30505187

RESUMEN

The effects of magnesium (Mg) supplementation on the growth performance, oxidative damage, DNA damage, and photosynthetic pigment synthesis, as well as on the activity level of carbonic anhydrase (CA), ribulose-1,5-bisphosphate carboxylase (Rubisco), and antioxidant enzymes were studied in Vicia faba L. plants exposed to heat stress (HS) and non-heat-stress (non-HS) conditions. Seeds were grown in pots containing a 1:1 mixture of sand and peat, with Mg treatments. The treatments consisted of (i) 0 Mg and non-HS (ambient temperature; control); (ii) 50 mM Mg; (iii) HS (38 °C); and (iv) 50 mM Mg and HS (38 °C). HS was imposed by placing potted plants in an incubator at 38 °C for 48 h. Growth attributes, total chlorophyll (Total Chl), and CA, and Rubisco activity decreased in plants subjected to HS, whereas accumulation of organic solutes [proline (Pro) and glycine betaine (GB)]; superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity; DNA damage; electrolyte leakage (EL); and malondialdehyde (MDA) and hydrogen peroxide (H2O2) content all increased. Application of Mg, however, significantly enhanced further proline (Pro), glycinebetaine (GB), SOD, POD, and CAT activity, and decreased DNA damage, EL, and MDA and H2O2 concentrations. These results suggest that adequate supply of Mg is not only essential for plant growth and development, but also improves plant tolerance to HS by suppressing cellular damage induced by reactive oxygen species through the enhancement of the accumulation of Pro and GB, and the actions of antioxidant enzymes.

13.
Plant Physiol Biochem ; 132: 375-384, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30268029

RESUMEN

Soil salinity is an adverse abiotic factor which reduces plant growth, yield and quality. Plant growth-promoting rhizobacteria (PGPR) have a great potential to enhance growth and alleviate saline stress effects without harming the environment via regulating physiological and molecular processes in plants. This study aimed at investigating Bacillus firmus SW5 effects on the performance of soybean (Glycine max L.) subjected to salt stress (0, 40 and 80 mM NaCl). Salinity stress mitigated the growth and biomass yield, root architecture traits, nutrient acquisition, chlorophyll level, transpiration rate (E), photosynthesis rate (Pn), stomatal conductance (gs), soluble proteins content, soluble sugars content and total phenolics and flavonoid contents of soybean plants. High salinity augmented the levels of osmolytes (glycine betaine and proline), hydrogen peroxide (H2O2), malondialdehyde (MDA) and the activities of antioxidant enzymes (APX, CAT, SOD and POD) in soybean plants. High salinity also induced the expression of antioxidant enzyme-encoding genes (APX, CAT, POD, Fe-SOD) and genes conferring tolerance to salinity (GmVSP, GmPHD2, GmbZIP62, GmWRKY54, GmOLPb, CHS) in soybean plants. On the other hand, inoculation of NaCl-stressed soybean plants with Bacillus firmus SW5 promoted the growth and biomass yield, chlorophyll synthesis, nutrient uptake, gas exchange parameters, osmolytes levels, total phenolic and flavonoid contents, and antioxidant enzymes activities, in comparison with the plants treated with NaCl alone. Bacillus firmus SW5 inoculation also significantly reduced the IC50 values for both DPPH and ß-carotene-linoleic acid assays and indicated higher antioxidant activities in salt-stressed plants. Furthermore, contents of H2O2 and MDA were alleviated in salinity-stressed soybean plants inoculated with Bacillus firmus SW5, in comparison with those in plants exposed to NaCl alone. The antioxidant enzyme-encoding genes and stress-related genes exhibited the highest expression levels in soybean plants inoculated with Bacillus firmus SW5 and treated with 80 mM NaCl. Taken together, our results demonstrate the crucial role of Bacillus firmus SW5 in ameliorating the adverse effects of high salinity on soybean growth and performance via altering the root system architecture and inducing the antioxidant defense systems and stress-responsive genes expression.


Asunto(s)
Antioxidantes/metabolismo , Bacillus firmus/metabolismo , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Glycine max/fisiología , Raíces de Plantas/anatomía & histología , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Betaína/metabolismo , Biomasa , Clorofila/metabolismo , Flavonoides/metabolismo , Gases/metabolismo , Genes de Plantas , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Nitrógeno/análisis , Fenoles/metabolismo , Fósforo/análisis , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Salinidad , Solubilidad , Glycine max/crecimiento & desarrollo , Azúcares/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA