Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Microbiol ; 61(11): 993-1011, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38048022

RESUMEN

Listeria monocytogenes is an important food-borne pathogen that causes listeriosis and has a high case fatality rate despite its low incidence. Medicinal plants and their secondary metabolites have been identified as potential antibacterial substances, serving as replacements for synthetic chemical compounds. The present studies emphasize two significant medicinal plants, Allium cepa and Zingiber officinale, and their efficacy against L. monocytogenes. Firstly, a bacterial isolate was obtained from milk and identified through morphology and biochemical reactions. The species of the isolate were further confirmed through 16S rRNA analysis. Furthermore, polar solvents such as methanol and ethanol were used for the extraction of secondary metabolites from A. cepa and Z. officinale. Crude phytochemical components were identified using phytochemical tests, FTIR, and GC-MS. Moreover, the antibacterial activity of the crude extract and its various concentrations were tested against L. monocytogenes. Among all, A. cepa in methanolic extracts showed significant inhibitory activity. Since, the A. cepa for methanolic crude extract was used to perform autography to assess its bactericidal activity. Subsequently, molecular docking was performed to determine the specific compound inhibition. The docking results revealed that four compounds displayed strong binding affinity with the virulence factor Listeriolysin-O of L. monocytogenes. Based on the above results, it can be concluded that the medicinal plant A. cepa has potential antibacterial effects against L. monocytogenes, particularly targeting its virulence.


Asunto(s)
Antiinfecciosos , Listeria monocytogenes , Plantas Medicinales , Zingiber officinale , Animales , Cebollas , Leche/microbiología , ARN Ribosómico 16S/genética , Simulación del Acoplamiento Molecular , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Extractos Vegetales/farmacología , Fitoquímicos/farmacología
2.
Pak J Pharm Sci ; 36(4(Special)): 1331-1336, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37606024

RESUMEN

Selenium is a mineral that is essential to human health and is widely recognized for its responsibilities as a powerful anticancer vitamin and antibacterial vitamin. Selenium also plays a critical part in the production of vitamin D. The purpose of this research was to evaluate the particular effects that selenium nano-particles (SeNPs') had on the infectious agent Staphylococcus aureus as well as the breast cancer cell lines MCF-7 and MDA-MB-231. The proportion of MDA-MB-231 and MCF-7 cells that underwent late apoptosis was dramatically increased by selenium nanoparticles, whereas the number of cells that underwent cell expansion was significantly reduced. There was a wide range of variability in the effects of selenium nanoparticle treatment on cell growth apoptosis, apoptosis rates and patterns of cell cycle arrest. After 2, 4 and 6 hours, researchers found that the development of S. aureus was significantly reduced by selenium nanoparticles at doses of 8.0, 16.0 and 32g/mL. In addition to this, the presence of selenium nanoparticles resulted in a reduced percentage of bacteria that were still alive. According to the findings of the study, there is a need for more research into selenium nanoparticles with the intention of preventing and treating infections caused by S. aureus.


Asunto(s)
Selenio , Humanos , Selenio/farmacología , Células MCF-7 , Staphylococcus aureus , Vitaminas , Vitamina D
3.
Micromachines (Basel) ; 14(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37512683

RESUMEN

The application of green synthesis for silver nanoparticles in nanomedicine has experienced significant growth. Strobilanthes glutinosus, a plant primarily located in the Himalayas, remains largely unexplored. Considering the biomedical value of S. glutinosus, phytochemicals from this plant were used for the biosynthesis of silver nanoparticles. Silver nanoparticles were synthesized from aqueous extract of root and leaves of Strobilanthes glutinosus. The synthesized silver nanoparticles were characterized using UV-Vis spectrophotometry, Fourier-transform infrared spectroscopy, transmission electron microscopy, and X-ray diffraction. Total phenolic and flavonoid contents of plants were determined and compared with nanoparticles. The biomedical efficacy of plant extracts and silver nanoparticles was assessed using antioxidant and antibacterial assays. The UV-Vis spectra of leaf- and root-extract-mediated AgNPs showed characteristic peaks at 428 nm and 429 nm, respectively. TEM images revealed the polycrystalline and spherical shapes of leaf- and root-extract-mediated AgNPs with size ranges of 15-60 nm and 20-52 nm, respectively. FTIR findings shown the involvement of phytochemicals of root and leaf extracts in the reduction of silver ions into silver nanoparticles. The crystalline face-centered cubic structure of nanoparticles is depicted by the XRD spectra of leaf and root AgNPs. The plant has an ample amount of total phenolic content (TPC) and total flavonoid content (TFC), which enhance the scavenging activity of plant samples and their respective AgNPs. Leaf and root AgNPs have also shown good antibacterial activity, which may enhance the medicinal value of AgNPs.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118766, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32799187

RESUMEN

Trivalent chromium (Cr(III)) is considered to exhibit hormesis (bi-phasic dose-response) property, where low dose be beneficial and high dose shows toxic effect. The present work describe the development of a bimetallic Ag/Co-polyvinylpyrrolidone nanocomposite (Ag/Co-PVP NPs) probe to detect and quantify Cr(III) ions from aqueous samples. The hydrodynamic size and zeta potential of the particle was determined to be 29 ± 1.3 nm and -37.19 ± 2.4 mV respectively. The interaction of Cr(III) with Ag/Co-PVP probe showed drastic change in colour of NPs from dark brown to pale yellow, with corresponding blue shift, tapering width and increased peak intensity. The probe showed high specificity towards Cr(III) among the tested metal ions. A linearity was observed between various dilutions of Cr(III) ions (10 to 50 nM) and the absorbance of Ag/Co-PVP NPs at 428 nm with R2 value of 0.998. The minimum detectable limit of Cr(III) was calculated to be 0.6 nM. The influence of salinity, temperature and pH on detection was studied. The probe was found to detect Cr(III) at acidic pH effectively. Competitive metal ions did not interfere the detection of Cr(III). The water sample collected from Noyyal river was taken to estimate Cr(III) by using the prepared probe to ensure practical applicability. The sample contains 9.3 nM of Cr(III) that was cross verified with AAS analysis. Hence, it is understood that the reported probe can be used to detect Cr(III) selectively with high accuracy from aqueous samples. In addition, the particles also exhibited excellent photocatalytic activity under visible light. Ag/Co-PVP nanocomposites exhibited excellent antibacterial activity against both gram +ve (B. subtilis) and gram -ve (E. coli) bacteria.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Antibacterianos/farmacología , Escherichia coli , Povidona , Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA