RESUMEN
Roasting of mustard seeds prior to oil extraction is a well-documented unit operation essential to produce canolol and other lipophilic sinapates. This study investigated the effectiveness of air frying as a seed roasting treatment operation for enhancing the recovery of lipophilic sinapates from various mustard samples and fractions/products. Air frying of seeds, powder, cake, bran, and flour from different mustard varieties was carried out at temperature-time combinations of 160, 170, and 180°C for 5, 10, 15, and 20 min, respectively. Oil was extracted using the Soxtec method. Lipophilic sinapates were extracted from the oil using equal volumes of hexane to methanol 70% (v/v) and quantified by high performance liquid chromatography-diode array detection (HPLC-DAD). The total phenolic content (TPC) and antioxidant activity of the oils were also evaluated. The results showed a time-temperature dependency for the recovery of major oil-soluble sinapates in all mustard samples and fractions. The optimum air frying condition 180°C for 15 min produced the maximum yield of canolol as well as other unidentified oil-soluble sinapates (retention time (RT)-7.7, RT-11.50, RT-14.95, and RT-16.24 min). The oil from lower grade yellow mustard seeds (LGYMS) roasted at 180°C for 20 mins specifically had the highest TPC (3402.22 ± 58.79 mg GAE/g oil), while LGYMS oils generally showed better antioxidant activities (2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric ion reducing antioxidant power (FRAP), and inhibition of linoleic acid oxidation) but were lower in metal ion chelating capacity. This information would be beneficial to the oil industry because air frying generated valuable canolol and other antioxidant lipophilic sinapates from mustard varieties and their fractions. PRACTICAL APPLICATION: A major limitation in the application of natural extracts in vegetable oils is the poor lipophilic nature of phenolic compounds. This study employed a new thermal treatment (air frying) in the recovery of canolol and other lipophilic antioxidants. Such treatments can enrich mustard-based ingredients with canolol and other lipophilic antioxidants for domestic and industrial applications.
Asunto(s)
Antioxidantes , Culinaria , Ácidos Cumáricos , Planta de la Mostaza , Cromatografía Líquida de Alta Presión , Culinaria/métodos , Ácidos Cumáricos/química , Ácidos Cumáricos/aislamiento & purificación , Planta de la Mostaza/química , Aceites de Plantas/química , Semillas/químicaRESUMEN
The aim of this work was to characterize the antioxidant properties of some of the peptides present in bromelain mung bean meal protein hydrolysate (MMPH). The MMPH was subjected to two rounds of bioassay-guided reversed-phase HPLC separation followed by peptide identification in the most potent fractions using tandem mass spectrometry. Twelve antioxidant peptides, namely, HC, CGN, LAN, CTN, LAF, CSGD, MMGW, QFAAD, ERF, EYW, FLQL, and QFAW were identified and assayed for antioxidant properties. CTN, HC, CGN, and CSGD were the most potent (p < 0.05) DPPH radical scavengers with EC50 values of 0.30, 0.29, 0.28, and 0.30 mg/mL, respectively, which are lower than the 0.03 mg/mL obtained for reduced glutathione (GSH). CTN, HC, CGN, and CSGD exhibited the most potent (p < 0.05) scavenging activities against hydroxyl and superoxide radicals with EC50 values that are similar to those of GSH. The cysteine-containing peptides also had stronger ferric reducing antioxidant power and metal chelation activity than peptides devoid of cysteine. In contrast, MMGW, ERF, and EYW had poor radical scavenging and metal chelation activities. We conclude that the availability of the sulfhydryl group may have enhanced antioxidant potency while the presence of bulky groups such phenylalanine and tryptophan had an opposite effect.
Asunto(s)
Péptidos/química , Vigna/enzimología , Vigna/metabolismo , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Quelantes , Cromatografía Líquida de Alta Presión/métodos , Depuradores de Radicales Libres/química , Glutatión/metabolismo , Radical Hidroxilo , Peroxidación de Lípido , Hidrolisados de Proteína/química , Proteínas/química , Superóxidos/químicaRESUMEN
The aim of this study was to evaluate the nutritional value and antioxidant properties of aqueous extracts of some Bangladesh vegetables using fruits of ash gourd, bitter gourd, brinjal, okra, ridge gourd, snake gourd, and leaves of Indian spinach, kangkong, and stem amaranth. Proximate composition showed that the dried extracts were composed mainly of crude protein (14.6%-46.7%) and non-fibre carbohydrates (26.4%-53.5%). With the exception of stem amaranth, all the extracts had >40% DPPH radical scavenging ability at 0.5 mg/ml. In contrast metal chelation was lower, except in Indian spinach with ~46%. The ferric reducing antioxidant power (FRAP) was highest for the kangkong (10.9 mM Fe3+ reduced), which is similar to the 9.9 mM for butylated hydroxytoluene (BHT). All the extracts suppressed linoleic acid oxidation better than BHT within the first 5 days of the incubation period. We conclude that the Indian spinach, kangkong, and okra could be considered as the most promising sources of antioxidant compounds. PRACTICAL APPLICATIONS: Vegetables are commonly consumed as part of a regular diet but the high water and fiber contents usually mean that large quantities are required to provide long-term health benefits. Therefore, in this work, aqueous extracts of nine Bangladesh vegetables were prepared to provide a more concentrated form of nutrients and bioactive compounds. The extracts had strong nutritional value based on the high contents of crude protein, potassium, iron, and non-fibre carbohydrates. The high content of polyphenolic compounds in the extracts can also provide health benefits, which was demonstrated through strong free radical scavenging, metal chelation, ferric iron reduction, and inhibition of linoleic acid oxidation. These vegetable extracts have the potential to be used as sources of bioactive compounds to prevent or treat non-communicable diseases that are associated with high oxidative stress.
Asunto(s)
Antioxidantes , Verduras , Antioxidantes/análisis , Bangladesh , Extractos Vegetales/farmacología , AguaRESUMEN
The aim of this work was to determine the antioxidant properties of aqueous extracts of vegetable leaf-fortified bread as well as estimate the contents of polyphenolic compounds. Enriched bread was produced from wheat flour fortified at 1, 2, and 3% (w/w) with dried leafy vegetable powders from Amaranthus viridis, Solanum macrocarpon, and Telfairia occidentalis. Gallic acid was the most abundant soluble polyphenol in the control bread and the content in the control bread was significantly higher (p < 0.05) than in all the fortified bread samples. Fortification of bread especially at 3% level resulted in significantly (p < 0.05) higher concentrations of other polyphenols (myricetin, catechin, quercetin, and rutin) compared to the control bread. The fortified bread extracts had significantly (p < 0.05) more effective antioxidants than the control for DPPH radical scavenging activity, ferric iron reducing antioxidant power, metal chelation, and inhibition of linoleic acid peroxidation. PRACTICAL APPLICATIONS: Bread is one of the consumed foods and could be used as a suitable carrier of bioactive compounds. Leafy vegetables contain high levels of polyphenols that could provide beneficial effects by contributing to improved health status of consumers. Therefore, incorporation of leafy vegetables into leavened bread could provide a means of enhancing polyphenol consumption. In this work, we showed that soluble polyphenols were enriched in vegetable-fortified bread. The polyphenol-rich extracts of the fortified bread demonstrated better free radical scavenging and inhibition of unsaturated fatty acid oxidation activities than the regular bread. Therefore, regular consumption of vegetable leaf-fortified bread could lead to reduced oxidative stress and associated chronic diseases in human beings. The vegetable leaf fortification could also serve as a suitable means of enhancing the shelf life of wheat bread.
Asunto(s)
Antioxidantes/química , Pan/análisis , Polifenoles/análisis , Antioxidantes/análisis , Almacenamiento de Alimentos , Alimentos Fortificados , Depuradores de Radicales Libres/análisis , Humanos , Hojas de la Planta/química , Verduras/químicaRESUMEN
Mung bean seed is a well-known plant protein consumed in Asian countries but the protein is usually retrieved as a waste product during starch production. This study investigated the anti-allergic property of mung bean protein hydrolysates (MBPH) produced by enzymatic hydrolysis using non-gastrointestinal (non-GI), GI and a combination of non-GI+GI enzymes. The hydrolysates were investigated for any anti-allergic property by detecting the amount of ß-hexosaminidase released in RBL-2H3 cells, and complemented with the MTT assay to show cell viability. It was found that MBPH hydrolyzed by a combination of flavourzyme (non-GI enzyme) and pancreatin (GI enzyme) exhibited the highest anti-allergic activity (135.61%), followed by those produced with alcalase, a non-GI enzyme (121.74%) and 80.32% for pancreatin (GI enzyme). Minimal toxicity (<30%) of all hydrolysates on RBL-2H3 cells line was observed. The results suggest that MBPH can potentially serve as a hypoallergenic food ingredient or supplement. PRACTICAL APPLICATIONS: Mung bean (Vigna radiata L. (Wilczek)) is also known as "green gram" and it is an excellent source of protein. The major mung bean storage proteins are the globulin, albumin and legumin, which are also referred to as legume allergens. Our study showed that mung bean peptides obtained after enzymatic hydrolysis influenced ß-hexosaminidase inhibition without any toxic effect on RBL-2H3 cells. This indicates that mung bean allergenicity can be reduced after enzymatic hydrolysis and the protein hydrolysates could be as a hypoallergic food, ingredient, supplement and/or protein substitute in the formulation of food products.
Asunto(s)
Antialérgicos/farmacología , Endopeptidasas/metabolismo , Tracto Gastrointestinal/enzimología , Pancreatina/metabolismo , Subtilisinas/metabolismo , Vigna/química , Secuencia de Aminoácidos , Animales , Antialérgicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Péptidos/química , Péptidos/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proteolisis , Ratas , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , beta-N-Acetilhexosaminidasas/metabolismoRESUMEN
Proteins from tilapia frame and skin can potentially be precursors of antihypertensive peptides according to the result of BIOPEP analyses. The aim was to generate peptides with inhibitory effects against angiotensin-converting enzyme (ACE) and renin from tilapia frame and skin protein isolates (FPI and SPI). The most active hydrolysate was then tested for blood pressure-lowering ability in spontaneously hypertensive rats (SHRs). Tilapia frame and skin protein hydrolysates (FPHs and SPHs) were respectively produced from FPI and SPI hydrolysis using pepsin, papain, or bromelain. The ACE-inhibitory activities of tilapia protein hydrolysates with varying degree of hydrolysis (DH) were evaluated. In order to enhance the activity, the hydrolysate was fractionated into four fractions (<1 kDa, 1-3 kDa, 3-5 kDa, and 5-10 kDa) and the one with the greatest ability to inhibit in vitro ACE and renin activities was subjected to oral administration (100 mg/kg body weight) to SHRs. Systolic and diastolic blood pressure (SBP and DBP), mean arterial pressure (MAP), and heart rates (HR) were subsequently measured within 24 h. The pepsin-hydrolyzed FPH (FPHPe) with the highest DH (23%) possessed the strongest ACE-inhibitory activity (IC50: 0.57 mg/mL). Its <1 kDa ultrafiltration fraction (FPHPe1) suppressed both ACE (IC50: 0.41 mg/mL) and renin activities more effectively than larger peptides. In addition, FPHPe1 significantly (p < 0.05) reduced SBP (maximum -33 mmHg), DBP (maximum -24 mmHg), MAP (maximum -28 mmHg), and HR (maximum -58 beats) in SHRs. FPHPe1 showed both in vitro and in vivo antihypertensive effects, which suggest tilapia processing coproducts may be valuable protein raw materials for producing antihypertensive peptides.