Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1863(6): 1088-1097, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30928491

RESUMEN

BACKGROUND: Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6. Mammals cannot synthesize vitamin B6, so they rely on dietary uptake of the different B6 forms, and via the B6 salvage pathway they interconvert them into PLP. Humans possess three enzymes in this pathway: pyridoxal kinase, pyridox(am)ine phosphate oxidase and pyridoxal phosphatase. Besides these, a fourth enzyme has been described in plants and yeast but not in humans: pyridoxal reductase. METHODS: We analysed B6 vitamers in remnant CSF samples of PLP-treated patients and four mammalian cell lines (HepG2, Caco2, HEK293 and Neuro-2a) supplemented with PL as the sole source of vitamin B6. RESULTS: Strong accumulation of pyridoxine (PN) in CSF of PLP-treated patients was observed, suggesting the existence of a PN-forming enzyme. Our in vitro studies show that all cell lines reduce PL to PN in a time- and dose-dependent manner. We compared the amino acid sequences of known PL reductases to human sequences and found high homology for members of the voltage-gated potassium channel beta subunits and the human aldose reductases. Pharmacological inhibition and knockout of these proteins show that none of the candidates is solely responsible for PL reduction to PN. CONCLUSIONS: We show evidence for the presence of PL reductase activity in humans. Further studies are needed to identify the responsible protein. GENERAL SIGNIFICANCE: This study expands the number of enzymes with a role in B6 salvage pathway. We hypothesize a protective role of PL reductase(s) by limiting the intracellular amount of free PL and PLP.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Vitamina B 6 , Células CACO-2 , Células HEK293 , Células Hep G2 , Humanos , Piridoxina/metabolismo , Vitamina B 6/farmacocinética , Vitamina B 6/farmacología
2.
J Inherit Metab Dis ; 39(5): 733-741, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27342130

RESUMEN

BACKGROUND: Recent decades have unravelled the molecular background of a number of inborn errors of metabolism (IEM) causing vitamin B6-dependent epilepsy. As these defects interfere with vitamin B6 metabolism by different mechanisms, the plasma vitamin B6 profile can give important clues for further molecular work-up. This has so far been investigated in only a small number of patients. METHODS: We evaluated the vitamin B6 vitamers pyridoxal 5'-phosphate (PLP), pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN) and the catabolite pyridoxic acid (PA) in the so far largest patient cohort: reference (n = 50); pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency (n = 6); antiquitin (ATQ) deficiency (n = 21); tissue non-specific alkaline phosphatase (TNSALP) deficiency (n = 2) and epileptic encephalopathy (EE) of unknown etiology tested negative for ATQ and PNPO deficiency (n = 64). RESULTS: High plasma PM concentration was found in all patients with PNPO deficiency irrespective of vitamin B6 supplementation. Their PM concentration and the PM/PA ratio was significantly higher (p < 0.0001), compared to any other patients analysed. One patient with TNSALP deficiency and sampling prior to PN supplementation had markedly elevated plasma PLP concentration. On PN supplementation, patients with TNSALP deficiency, ATQ deficiency and patients of the EE cohort had similar plasma vitamin B6 profiles that merely reflect the intake of supra-physiological doses of vitamin B6. The interval of sampling to the last PN intake strongly affected the plasma concentrations of PN, PL and PA. CONCLUSIONS: PM concentrations and the PM/PA ratio clearly separated PNPO-deficient patients from the other cohorts. The plasma PM/PA ratio thus represents a robust biomarker for the selective screening of PNPO deficiency.


Asunto(s)
Plasma/química , Espasmos Infantiles/sangre , Adolescente , Adulto , Biomarcadores/sangre , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Errores Innatos del Metabolismo/sangre , Piridoxal/sangre , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/sangre , Piridoxamina/sangre , Ácido Piridóxico/sangre , Piridoxina/sangre , Vitamina B 6/sangre , Adulto Joven
4.
J Inherit Metab Dis ; 33 Suppl 3: S283-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20574715

RESUMEN

BACKGROUND: Phenylketonuria (PKU) causes irreversible central nervous system damage unless a phenylalanine (PHE) restricted diet with amino acid supplementation is maintained. To prevent growth retardation, a protein/amino acid intake beyond the recommended dietary protein allowance is mandatory. However, data regarding disease and/or diet related changes in body composition are inconclusive and retarded growth and/or adiposity is still reported. The BodPod whole body air-displacement plethysmography method is a fast, safe and accurate technique to measure body composition. AIM: To gain more insight into the body composition of children with PKU. METHODS: Patients diagnosed with PKU born between 1991 and 2001 were included. Patients were identified by neonatal screening and treated in our centre. Body composition was measured using the BodPod system (Life Measurement Incorporation©). Blood PHE values determined every 1-3 months in the year preceding BodPod analysis were collected. Patients were matched for gender and age with data of healthy control subjects. Independent samples t tests, Mann-Whitney and linear regression were used for statistical analysis. RESULTS: The mean body fat percentage in patients with PKU (n = 20) was significantly higher compared to healthy controls (n = 20) (25.2% vs 18.4%; p = 0.002), especially in girls above 11 years of age (30.1% vs 21.5%; p = 0.027). Body fat percentage increased with rising body weight in patients with PKU only (R = 0.693, p = 0.001), but did not correlate with mean blood PHE level (R = 0.079, p = 0.740). CONCLUSION: Our data show a higher body fat percentage in patients with PKU, especially in girls above 11 years of age.


Asunto(s)
Adiposidad , Fenilcetonurias/fisiopatología , Pletismografía Total/métodos , Adolescente , Factores de Edad , Aminoácidos/administración & dosificación , Biomarcadores/sangre , Índice de Masa Corporal , Estudios de Casos y Controles , Niño , Dieta con Restricción de Proteínas , Diseño de Equipo , Femenino , Humanos , Recién Nacido , Modelos Lineales , Masculino , Tamizaje Neonatal , Fenilalanina/sangre , Fenilcetonurias/sangre , Fenilcetonurias/diagnóstico , Fenilcetonurias/dietoterapia , Pletismografía Total/instrumentación , Valor Predictivo de las Pruebas , Factores Sexuales , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA