Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Lipid Res ; 56(8): 1511-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26063461

RESUMEN

Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months' supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze. Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety.


Asunto(s)
Ansiedad/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cheirogaleidae , Ácidos Grasos Omega-3/farmacología , Aceites de Pescado/química , Glucosa/metabolismo , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Metabolismo Basal/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Encéfalo/fisiopatología , Suplementos Dietéticos , Conducta Exploratoria/efectos de los fármacos , Ácidos Grasos Omega-3/sangre , Ácidos Grasos Omega-3/uso terapéutico , Masculino , Memoria Espacial/efectos de los fármacos
2.
Artículo en Inglés | MEDLINE | ID: mdl-25123062

RESUMEN

Specific mechanisms for maintaining docosahexaenoic acid (DHA) concentration in brain cells but also transporting DHA from the blood across the blood-brain barrier (BBB) are not agreed upon. Our main objective was therefore to evaluate the level of gene expression of fatty acid transport and fatty acid binding proteins in the cerebral cortex and at the BBB level during the perinatal period of active brain DHA accretion, at weaning, and until the adult age. We measured by real time RT-PCR the mRNA expression of different isoforms of fatty acid transport proteins (FATPs), long-chain acyl-CoA synthetases (ACSLs), fatty acid binding proteins (FABPs) and the fatty acid transporter (FAT)/CD36 in cerebral cortex and isolated microvessels at embryonic day 18 (E18) and postnatal days 14, 21 and 60 (P14, P21 and P60, respectively) in rats receiving different n-3 PUFA dietary supplies (control, totally deficient or DHA-supplemented). In control rats, all the genes were expressed at the BBB level (P14 to P60), the mRNA levels of FABP5 and ACSL3 having the highest values. Age-dependent differences included a systematic decrease in the mRNA expressions between P14-P21 and P60 (2 to 3-fold), with FABP7 mRNA abundance being the most affected (10-fold). In the cerebral cortex, mRNA levels varied differently since FATP4, ACSL3 and ACSL6 and the three FABPs genes were highly expressed. There were no significant differences in the expression of the 10 genes studied in n-3 deficient or DHA-supplemented rats despite significant differences in their brain DHA content, suggesting that brain DHA uptake from the blood does not necessarily require specific transporters within cerebral endothelial cells and could, under these experimental conditions, be a simple passive diffusion process.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Corteza Cerebral/metabolismo , Ácidos Docosahexaenoicos/genética , Proteínas de Transporte de Ácidos Grasos/biosíntesis , Proteínas de Unión a Ácidos Grasos/metabolismo , Animales , Barrera Hematoencefálica/crecimiento & desarrollo , Corteza Cerebral/crecimiento & desarrollo , Ácidos Docosahexaenoicos/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Proteínas de Transporte de Ácidos Grasos/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/metabolismo , Regulación de la Expresión Génica , ARN Mensajero/biosíntesis , Ratas
3.
Lipids ; 47(8): 793-801, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22684890

RESUMEN

The particular interest in supplementing human foods with n-3 fatty acids has arisen from the findings that this series of polyunsaturated fatty acids (PUFA) have an impact on neuronal functions. Indeed vertebrates, including humans, preferentially use docosahexaenoic acid (DHA, 22:6n-3) over other long-chain n-3 PUFA for the genesis of their neuronal and retinal membranes. The grey mouse lemur is a nocturnal prosimian primate originating from Madagascar. The increased use of this omnivorous primate in nutritional studies (chronic caloric restriction, n-3 fatty acids supplementation), justifies the interest of determining their fatty acids body composition. In the present study, we report the fatty acid composition in lipid classes from the main target tissues (brain, retina, liver and adipose tissue) of six adult mouse lemurs raised under laboratory nutritional conditions. Among the main findings, n-6-docosapentaenoic acid (n-6-DPA; 22:5n-6) is very low in the brain cortex and retina, whereas there is a very high accumulation of docosahexaenoic acid (DHA, 22:6n-3) in the neural tissues compared to liver and plasma. In particular, DHA accounts for about one half of the total fatty acids in the retina ethanolamine glycerophospholipids. This high concentration clearly indicates that DHA is efficiently transferred from blood lipids to the outer segment of the mouse lemur retina. We conclude that the mouse lemur n-3 PUFA metabolism efficiently drives DHA to neural tissues, through the blood-brain barrier and the blood-retina barrier.


Asunto(s)
Tejido Adiposo/química , Química Encefálica , Cheirogaleidae/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos/metabolismo , Hígado/química , Retina/química , Animales , Barrera Hematoencefálica/metabolismo , Composición Corporal , Ácidos Docosahexaenoicos/análisis , Femenino , Fosfolípidos/análisis , Fosfolípidos/sangre
4.
Artículo en Inglés | MEDLINE | ID: mdl-22579067

RESUMEN

n-3 Polyunsaturated fatty acids (PUFA) support whole brain energy metabolism but their impact on neuroenergetics in specific brain areas and during neuronal activation is still poorly understood. We tested the effect of feeding rats as control, n-3 PUFA-deficient diet, or docosahexaenoic acid (DHA)-supplemented diet on the expression of key genes in fronto-parietal cortex and hippocampal neuroenergetics before and after neuronal stimulation (activated) by an enriched environment. Compared to control rats, n-3 deficiency specifically repressed GLUT1 gene expression in the fronto-parietal cortex in basal state and also during neuronal activation which specifically stimulated GLUT1. In contrast, in the CA1 area, n-3 deficiency improved the glutamatergic synapse function in both neuronal states (glutamate transporters, Na(+)/K(+) ATPase). DHA supplementation induced overexpression of genes encoding enzymes of the oxidative phosphorylation system and the F1F0 ATP synthase in the CA1 area. We conclude that n-3 deficiency repressed GLUT1 gene expression in the cerebral cortex, while DHA supplementation improved the mitochondrial ATP generation in the CA1 area of the hippocampus.


Asunto(s)
Corteza Cerebral/metabolismo , Ácidos Grasos Omega-3/metabolismo , Transportador de Glucosa de Tipo 1/genética , Hipocampo/metabolismo , Neuronas/metabolismo , Lóbulo Parietal/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Femenino , Transportador de Glucosa de Tipo 1/metabolismo , Ratas , Ratas Wistar
5.
Eur J Nutr ; 51(2): 199-209, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21647669

RESUMEN

PURPOSE: The conversion rate of α-linolenic acid (ALA) into docosahexaenoic acid (DHA) is determined by dietary and non-dietary factors. Higher capacity of DHA synthesis has been evidenced in females, indicating that sex factors influence the conversion pathway. To evaluate the extent to which sexual dimorphism of DHA synthesis is subordinated to nutritional handling, we measured the ω3 ∆4-desaturation index in male and female rats receiving adequate or inadequate amounts of ALA. The ω3 ∆4-desaturation index was drawn from the DHA to docosapentaenoic acid (ω3DPA) ratio in liver phospholipids. METHODS: Male and female rats born to ω3-deficient dams were fed a supplemented diet supplying low, inadequate, intermediate, or adequate ALA (5, 20, 100, or 300 mg ALA/100 g diet, respectively). Control rats from both gender received the adequate diet from fetal life. RESULTS: Compared with control, low ALA feeding induced the ω3 ∆4-desaturation index to increase by 38 and 70% in the phosphatidylethanolamine fraction of males and females, respectively, and by 67% in phosphatidylcholine in females only. Supplementations with increased doses of ALA progressively smoothed this gender effect. Moreover, the analysis of our data from a previous study shows that ovariectomy decreased, whereas estradiol treatment increased the ω3 index to values comparable with those of diet-matched males and intact females, respectively. CONCLUSION: Females are more prone than males to increase their index of ω3 ∆4-desaturation, especially in response to low supplies in ALA. Estradiol supports the ω3 index, suggesting that this hormone plays a role in the effect of gender on DHA synthesis.


Asunto(s)
Dieta , Suplementos Dietéticos , Ácidos Docosahexaenoicos/metabolismo , Hígado/efectos de los fármacos , Ácido alfa-Linolénico/metabolismo , Animales , Ácidos Grasos Insaturados/metabolismo , Femenino , Masculino , Ratas , Ratas Wistar , Factores Sexuales , Estearoil-CoA Desaturasa/metabolismo , Ácido alfa-Linolénico/administración & dosificación
6.
Int J Biochem Cell Biol ; 44(1): 123-31, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22062949

RESUMEN

The protection of the developing organism from oxidative damage is ensured by antioxidant defense systems to cope with reactive oxygen species (ROS), which in turn can be influenced by dietary polyunsaturated fatty acids (PUFAs). PUFAs in membrane phospholipids are substrates for ROS-induced peroxidation reactions. We investigated the effects of dietary supplementation with omega-3 PUFAs on lipid peroxidation and antioxidant enzyme activities in rat cerebrum, liver and uterus. Pups born from dams fed a diet low in omega-3 PUFAs were fed at weaning a diet supplying low α-linolenic acid (ALA), adequate ALA or enriched with eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Malondialdehyde (MDA), a biomarker of lipid peroxidation, and the activities of superoxide dismutase 1 (SOD1), SOD2, catalase (CAT) and glutathione peroxidase (GPX) were determined in the three target organs. Compared to low ALA feeding, supplementation with adequate ALA or with EPA+DHA did not affect the cerebrum MDA content but increased MDA content in liver. Uterine MDA was increased by the EPA+DHA diet. Supplementation with adequate ALA or EPA+DHA increased SOD2 activity in the liver and uterus, while only the DHA diet increased SOD2 activity in the cerebrum. SOD1, CAT and GPX activities were not altered by ALA or EPA+DHA supplementation. Our data suggest that increased SOD2 activity in organs of the growing female rats is a critical determinant in the tolerance to oxidative stress induced by feeding a diet supplemented with omega-3 PUFAs. This is may be a specific cellular antioxidant response to ROS production within the mitochondria.


Asunto(s)
Ácidos Grasos Omega-3/administración & dosificación , Mitocondrias/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Animales Recién Nacidos , Antioxidantes/metabolismo , Peso Corporal , Dieta , Modelos Animales de Enfermedad , Femenino , Malondialdehído/metabolismo , Mitocondrias/enzimología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
7.
PLoS One ; 6(6): e20491, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21666750

RESUMEN

Omega-3 (ω3) polyunsaturated fatty acids (PUFA) are major components of brain cells membranes. ω3 PUFA-deficient rodents exhibit severe cognitive impairments (learning, memory) that have been linked to alteration of brain glucose utilization or to changes in neurotransmission processes. ω3 PUFA supplementation has been shown to lower anxiety and to improve several cognitive parameters in rodents, while very few data are available in primates. In humans, little is known about the association between anxiety and ω3 fatty acids supplementation and data are divergent about their impact on cognitive functions. Therefore, the development of nutritional studies in non-human primates is needed to disclose whether a long-term supplementation with long-chain ω3 PUFA has an impact on behavioural and cognitive parameters, differently or not from rodents. We address the hypothesis that ω3 PUFA supplementation could lower anxiety and improve cognitive performances of the Grey Mouse Lemur (Microcebus murinus), a nocturnal Malagasy prosimian primate. Adult male mouse lemurs were fed for 5 months on a control diet or on a diet supplemented with long-chain ω3 PUFA (n = 6 per group). Behavioural, cognitive and motor performances were measured using an open field test to evaluate anxiety, a circular platform test to evaluate reference spatial memory, a spontaneous locomotor activity monitoring and a sensory-motor test. ω3-supplemented animals exhibited lower anxiety level compared to control animals, what was accompanied by better performances in a reference spatial memory task (80% of successful trials vs 35% in controls, p<0.05), while the spontaneous locomotor activity was reduced by 31% in ω3-supplemented animals (p<0.001), a parameter that can be linked with lowered anxiety. The long-term dietary ω3 PUFA supplementation positively impacts on anxiety and cognitive performances in the adult mouse lemur. The supplementation of human food with ω3 fatty acids may represent a valuable dietary strategy to improve behavioural and cognitive functions.


Asunto(s)
Ansiedad/dietoterapia , Cheirogaleidae/fisiología , Cognición/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Aceites de Pescado/química , Actividad Motora/efectos de los fármacos , Animales , Ansiedad/fisiopatología , Cheirogaleidae/sangre , Ritmo Circadiano/efectos de los fármacos , Humanos , Lípidos/sangre , Masculino , Aprendizaje por Laberinto , Ratones , Prueba de Desempeño de Rotación con Aceleración Constante , Análisis y Desempeño de Tareas
8.
Neurochem Int ; 56(5): 703-10, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20153394

RESUMEN

Several in vivo studies suggest that docosahexaenoic acid (22:6 n-3), the main n-3 long-chain polyunsaturated fatty acids (LC-PUFA) of brain membranes, could be an important regulator of brain energy metabolism by affecting glucose utilization and the density of the two isoforms of the glucose transporter-1 (GLUT1) (endothelial and astrocytic). This study was conducted to test the hypothesis that 22:6 n-3 in membranes may modulate glucose metabolism in brain endothelial cells. It compared the impact of 22:6 n-3 and the other two main LC-PUFA, arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3), on fatty acid composition of membrane phospholipids, glucose uptake and expression of 55-kDa GLUT1 isoform in two models of rat brain endothelial cells (RBEC), in primary culture and in the immortalized rat brain endothelial cell line RBE4. Without PUFA supplementation, both types of cerebral endothelial cells were depleted in 22:6 n-3, RBE4 being also particularly low in 20:4 n-6. After exposure to supplemental 20:4 n-6, 20:5 n-3 or 22:6 n-3 (15microM, i.e. a physiological dose), RBEC and RBE4 avidly incorporated these PUFA into their membrane phospholipids thereby resembling physiological conditions, i.e. the PUFA content of rat cerebral microvessels. However, RBE4 were unable to incorporate physiological level of 20:4 n-6. Basal glucose transport in RBEC (rate of [(3)H]-3-o-methylglucose uptake) was increased after 20:5 n-3 or 22:6 n-3 supplementation by 50% and 35%, respectively, whereas it was unchanged with 20:4 n-6. This increase of glucose transport was associated with an increased GLUT1 protein, while GLUT1 mRNA was not affected. The different PUFA did not impact on glucose uptake in RBE4. Due to alterations in n-6 PUFA metabolism and weak expression of GLUT1, RBE4 seems to be less adequate than RBEC to study PUFA metabolism and glucose transport in brain endothelial cells. Physiological doses of n-3 LC-PUFA have a direct and positive effect on glucose transport and GLUT1 density in RBEC that could partly explain decreased brain glucose utilization in n-3 PUFA-deprived rats.


Asunto(s)
Química Encefálica/efectos de los fármacos , Células Endoteliales/metabolismo , Ácidos Grasos Omega-3/farmacología , Glucosa/metabolismo , 3-O-Metilglucosa/metabolismo , Animales , Western Blotting , Capilares/citología , Capilares/efectos de los fármacos , Capilares/metabolismo , Células Cultivadas , Cartilla de ADN , ADN Complementario/biosíntesis , ADN Complementario/genética , Células Endoteliales/efectos de los fármacos , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Transportador de Glucosa de Tipo 1/biosíntesis , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 3/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Masculino , Ratas , Ratas Wistar
9.
J Nutr Biochem ; 21(3): 180-7, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19157821

RESUMEN

Dietary n-3 polyunsaturated fatty acids (PUFA) are major components of cell membranes and have beneficial effects on human health. Docosahexaenoic acid (DHA; 22:6n-3) is the most biologically important n-3 PUFA and can be synthesized from its dietary essential precursor, alpha-linolenic acid (ALA; 18:3n-3). Gender differences in the efficiency of DHA bioconversion have been reported, but underlying molecular mechanisms are unknown. We compared the capacity for DHA synthesis from ALA and the expression of related enzymes in the liver and cerebral cortex between male and female rats. Wistar rats, born with a low-DHA status, were supplied with a suboptimal amount of ALA from weaning to 8 weeks of age. Fatty acid composition was determined by gas chromatography, the mRNA expression of different genes involved in PUFA metabolism was determined by RT-PCR (low-density array) and the expression of proteins was determined by Western blot analysis. At 8 weeks, DHA content was higher (+20 to +40%) in each phospholipid class of female livers compared to male livers. The "Delta4," Delta5 and Delta6 desaturation indexes were 1.2-3 times higher in females than in males. The mRNA expression of Delta5- and Delta6-desaturase genes was 3.8 and 2.5 times greater, respectively, and the Delta5-desaturase protein was higher in female livers (+50%). No gender difference was observed in the cerebral cortex. We conclude that female rats replete their DHA status more readily than males, probably due to a higher expression of liver desaturases. Our results support the hypothesis on hormonal regulation of PUFA metabolism, which should be taken into account for specific nutritional recommendations.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Omega-3/metabolismo , Hígado/enzimología , Estearoil-CoA Desaturasa/metabolismo , Animales , Animales Lactantes , Corteza Cerebral/enzimología , Corteza Cerebral/metabolismo , delta-5 Desaturasa de Ácido Graso , Grasas Insaturadas en la Dieta/administración & dosificación , Ácidos Docosahexaenoicos/sangre , Ácidos Docosahexaenoicos/metabolismo , Ácido Graso Desaturasas/genética , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/sangre , Femenino , Regulación de la Expresión Génica , Hígado/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Fosfolípidos/metabolismo , Embarazo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Caracteres Sexuales , Estearoil-CoA Desaturasa/genética , Factores de Tiempo , Ácido alfa-Linolénico/administración & dosificación , Ácido alfa-Linolénico/sangre , Ácido alfa-Linolénico/deficiencia , Ácido alfa-Linolénico/metabolismo
10.
Neurochem Int ; 55(5): 295-301, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19576517

RESUMEN

Polyunsaturated fatty acids (PUFA) are crucial for proper functioning of cell membranes, particularly in brain. Biologically important PUFA include docosahexaenoic acid (n-3 series) and arachidonic acid (n-6 series) which can be formed from their respective dietary essential precursors, alpha-linolenic acid (ALA) and linoleic acid (LA). Steroid hormones are thought to modulate PUFA synthesis in humans but whether they regulate PUFA status in brain and/or in neural membranes is unknown. In human neuroblastoma SH-SY5Y cells, we compared the effect of estradiol, testosterone, and progesterone on PUFA synthesis. Cells were incubated with ALA and/or LA 7 microM in combination with estradiol, testosterone, or progesterone at 10 nM without serum. The fatty acid composition was determined by gas chromatography and the mRNA expression of genes involved in PUFA metabolism by real-time RT-PCR. Estradiol affected both the n-3 and the n-6 PUFA conversion, the n-3 PUFA pathway being more sensitive to the estradiol treatment. In ALA-supplemented cells, estradiol increased while testosterone decreased the long-chain n-3 PUFA content (+17% and -15%, respectively) and the mRNA expression of the Delta5-desaturase (+11% and -9%), these two events being strongly correlated. Progesterone did not affect the PUFA composition. The positive effect of estradiol was blocked by the estrogen receptor antagonist ICI-182,780. We conclude that steroids have differential effects on PUFA synthesis and that their mode of action could involve the modulation of the Delta5-desaturase mRNA expression in neuroblastoma cells. These results help our understanding of the regulation of brain PUFA metabolism by steroid hormones.


Asunto(s)
Estradiol/farmacología , Ácidos Grasos Insaturados/biosíntesis , Neuroblastoma/metabolismo , Progesterona/farmacología , Testosterona/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/metabolismo , Línea Celular Tumoral , Cromatografía de Gases , Moduladores de los Receptores de Estrógeno/farmacología , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Humanos , Neuroblastoma/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
J Nutr ; 138(9): 1719-24, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18716175

RESUMEN

Several studies suggest that (n-3) PUFA may play a role in the regulation of cognitive functions, locomotor and exploratory activity, and affective disorders. Additionally, (n-3) PUFA affect pineal function, which is implicated in the sleep-wake rhythm. However, no studies to our knowledge have explored the role of PUFA on the circadian system. We investigated the effect of an (n-3) PUFA-deficient diet on locomotor and pineal melatonin rhythms in Syrian hamsters used as model species in circadian rhythm research. To assess the possible relationship between voluntary wheel running activity and dopaminergic neurotransmission, we also measured endogenous monoamine concentrations in the striatum. Two-month-old male hamsters, fed either an (n-3) PUFA-deficient or an (n-3) PUFA-adequate diet, were housed individually in cages equipped with run wheels. At 3 mo, cerebral structures were extracted for biochemical and cellular analysis. In (n-3) PUFA-deficient hamsters, the induced changes in the pineal PUFA membrane phospholipid composition were associated with a reduction in the nocturnal peak level of melatonin that was 52% lower than in control hamsters (P < 0.001). The (n-3) PUFA-deficient hamsters also had higher diurnal (P < 0.01) and nocturnal (P = 0.001) locomotor activity than the control hamsters, in parallel with activation of striatal dopaminergic function (P < 0.05). The (n-3) PUFA-deficient hamsters exhibited several symptoms: chronic locomotor hyperactivity, disturbance in melatonin rhythm, and striatal hyperdopaminergia. We suggest that an (n-3) PUFA-deficient diet lessens the melatonin rhythm, weakens endogenous functioning of the circadian clock, and plays a role in nocturnal sleep disturbances as described in attention deficit/hyperactivity disorder.


Asunto(s)
Ritmo Circadiano/efectos de los fármacos , Dopamina/metabolismo , Ácidos Grasos Omega-3/farmacología , Melatonina/metabolismo , Actividad Motora/efectos de los fármacos , Animales , Cuerpo Estriado/metabolismo , Cricetinae , Dieta , Grasas Insaturadas en la Dieta/farmacología , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Insaturados/metabolismo , Femenino , Masculino , Mesocricetus , Glándula Pineal/metabolismo
12.
Lipids ; 43(1): 19-28, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17912567

RESUMEN

Whether neurosteroids regulate the synthesis of long chain polyunsaturated fatty acids in brain cells is unknown. We examined the influence of 17-beta-estradiol (E2) on the capacity of SH-SY5Y cells supplemented with alpha-linolenic acid (ALA), to produce eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). Cells were incubated for 24 or 72 h with ALA added alone or in combination with E2 (ALA + E2). Fatty acids were analyzed by gas chromatography of ethanolamine glycerophospholipids (EtnGpl) and phosphatidylcholine (PtdCho). Incubation for 24 h with ALA alone increased EPA and DPA in EtnGpl, by 330 and 430% compared to controls (P < 0.001) and DHA by only 10% (P < 0.05). Although DHA increased by 30% (P < 0.001) in ALA + E2-treated cells, the difference between the ALA and ALA + E2 treatments were not significant after 24 h (Anova-1, Fisher's test). After 72 h, EPA, DPA and DHA further increased in EtnGpl and PtdCho of cells supplemented with ALA or ALA + E2. Incubation for 72 h with ALA + E2 specifically increased EPA (+34% in EtnGpl, P < 0.001) and DPA (+15%, P < 0.001) compared to ALA alone. Thus, SH-SY5Y cells produced membrane EPA, DPA and DHA from supplemental ALA. The formation of DHA was limited, even in the presence of E2. E2 significantly favored EPA and DPA production in cells grown for 72 h. Enhanced synthesis of ALA-elongation products in neuroblastoma cells treated with E2 supports the hypothesis that neurosteroids could modulate the metabolism of PUFA.


Asunto(s)
Ácido Eicosapentaenoico/biosíntesis , Estradiol/farmacología , Ácidos Grasos Insaturados/biosíntesis , Neuroblastoma/metabolismo , Ácido alfa-Linolénico/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/metabolismo , Relación Dosis-Respuesta a Droga , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/metabolismo , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Humanos , Neuroblastoma/tratamiento farmacológico , Fosfolípidos/metabolismo , Células Tumorales Cultivadas
13.
Prog Lipid Res ; 45(3): 203-36, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16516300

RESUMEN

The importance of a high fat intake in the increasing prevalence of childhood and adult obesity remains controversial. Moreover, qualitative changes (i.e. the fatty acid composition of fats) have been largely disregarded. Herein is reviewed the role of polyunsaturated fatty acids (PUFAs) of the n-6 series in promoting adipogenesis in vitro and favouring adipose tissue development in rodents during the gestation/suckling period. Epidemiological data from infant studies as well as the assessment of the fatty acid composition of mature breast milk and infant formulas over the last decades in the Western industrialized world are revisited and appear consistent with animal data. Changes over decades in the intake of n-6 and n-3 PUFAs, with a striking increase in the linoleic acid/alpha-linolenic ratio, are observed. In adults, using a consumption model based upon production data, similar changes in the PUFA content of ingested lipids have been found for France, and are associated with an increase of fat consumption over the last 40 years. These profound quantitative and qualitative alterations can be traced in the food chain and shown to be due to changes in human dietary habits as well as in the feeding pattern of breeding stock. If prevention of obesity is a key issue for future generations, agricultural and food industry policies should be thoroughly reevaluated.


Asunto(s)
Tejido Adiposo/crecimiento & desarrollo , Ácidos Grasos Omega-6/administración & dosificación , Obesidad/etiología , Adipogénesis/fisiología , Adulto , Animales , Grasas de la Dieta/administración & dosificación , Ácidos Grasos Omega-3/administración & dosificación , Conducta Alimentaria , Humanos , Lactante , Fenómenos Fisiológicos Nutricionales del Lactante , Recién Nacido , Leche Humana/química , Obesidad/fisiopatología
14.
Lipids ; 40(7): 719-28, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16196423

RESUMEN

Synthesis of docosahexaenoic acid (DHA) from its metabolic precursors contributes to membrane incorporation of this FA within the central nervous system. Although cultured neural cells are able to produce DHA, the membrane DHA contents resulting from metabolic conversion do not match the high values of those resulting from supplementation with preformed DHA. We have examined whether the DHA precursors down-regulate the incorporation of newly formed DHA within human neuroblastoma cells. SH-SY5Y cells were incubated with gradual doses of alpha-linolenic acid (alpha-LNA), EPA, or docosapentaenoic acid (DPA), and the incorporation of DHA into ethanolamine glycerophospholipids was analyzed as a reflection of synthesizing activity. The incorporation of EPA, DPA, and preformed DHA followed a dose-response saturating curve, whereas that of DHA synthesized either from alpha-LNA, EPA, or DPA peaked at concentrations of precursors below 15-30 microM and sharply decreased with higher doses. The mRNA encoding for six FA metabolism genes were quantified using real-time PCR. Two enzymes of the peroxisomal beta-oxidation, L-bifunctional protein and peroxisomal acyl-CoA oxidase, were expressed at lower levels than fatty acyl-CoA ligase 3 (FACL3) and delta6-desaturase (delta6-D). The delta6-D mRNA slightly increased between 16 and 48 h of culture, and this effect was abolished in the presence of 70 microM EPA. In contrast, the EPA treatment resulted in a time-dependent increase of FACL3 mRNA. The terminal step of DHA synthesis seems to form a "metabolic bottleneck," resulting in accretion of EPA and DPA when the precursor concentration exceeds a specific threshold value. We conclude that the critical precursor- concentration window of responsiveness may originate from the low basal expression level of peroxisomal enzymes.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Transcripción Genética/efectos de los fármacos , Secuencia de Bases , División Celular/efectos de los fármacos , Línea Celular Tumoral , Cartilla de ADN , Relación Dosis-Respuesta a Droga , Ácidos Grasos Omega-3/metabolismo , Humanos , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética
15.
Reprod Nutr Dev ; 44(3): 263-71, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15460165

RESUMEN

The second symposium on anomalies of fatty acids, ageing and degenerating pathologies for the French-speaking community was held during January 2002 in Paris (France) and reunited more than 200 participants, including a majority of medical practitioners. It was organised around 8 conferences treating the following subjects: a general presentation of the metabolism of fatty acids and their biological functions (in particular polyunsaturated fatty acids or PUFA), the exploration of PUFA in man during situations of nutritional and pathological disequilibrium, and the importance of PUFA in the aetiology and prevention of pathophysiologies such as cardiovascular, autoimmune and inflammatory diseases, diabetes and obesity, cancer and certain neuropsychiatric affections such as depression. Indeed, even though edible fatty acids present a common energetic function, by beta-oxidation, and a structural function, as a constituent of membrane lipids, some of them have a more specific role as an essential nutrient. These are essential fatty acids including the two families of polyunsaturated fatty acids (n-6 and n-3 PUFA). Their metabolism leads to the synthesis of derivatives found in cellular membranes (structural role) and oxygenated molecules, the eicosanoids, whose main action is of the same type as that of hormones. These derivatives and oxygenated molecules also regulate different metabolic pathways by modulating the expression of target genes via activation of specific transcription factors. Due to their quality and their quantity in food, the PUFA may interfere with the incidence of a large number of pathologies whose causes are varied (cardiovascular and inflammatory diseases, cancers, neuropathologies, ...). The particular interest in nutrition of PUFA of the n-3 series (or omega3) and in particular of long-chain derivatives mainly found in high quantity in fish oils (eicosapentaenoic acid and docosahexaenoic acid) is now widely confirmed for cardiovascular and inflammatory physiology and formed the subject of increasing investigations for prevention of certain pathologies of the central nervous system. In this paper, we are first going to recall the generalities of metabolism and functional properties of PUFA. Secondly, we will list the pathologies whose frequency and symptoms are susceptible to be corrected by the dietary intake of PUFA, notably by reaching the nutritional equilibrium between the family of linoleic acid (n-6 or omega6) and that of alpha-linolenic acid (n-3 or omega3).


Asunto(s)
Envejecimiento , Enfermedad , Ácidos Grasos , Enfermedades Autoinmunes , Enfermedades Cardiovasculares , Diabetes Mellitus , Ácidos Grasos/química , Ácidos Grasos/fisiología , Ácidos Grasos Omega-3 , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/fisiología , Humanos , Inflamación , Neoplasias , Enfermedades del Sistema Nervioso , Fenómenos Fisiológicos de la Nutrición , Obesidad , Terminología como Asunto
16.
J Neurosci Res ; 75(1): 96-106, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14689452

RESUMEN

Docosahexaenoic acid (DHA), the main n-3 polyunsaturated fatty acid (PUFA) in membranes, is particularly abundant in brain cells. Decreased cerebral concentrations of DHA, resulting from dietary n-3 deficiency, are associated with impaired cognitive function. Because the cellular causes of this impairment are still unknown, we need in vitro models that mimic the variations in n-3/n-6 PUFA seen in vivo. We have compared the PUFA profiles of hamster astrocytes cultured in medium supplemented with long-chain PUFA [DHA and/or arachidonic acid (AA)] with those of brain tissue from hamsters fed an n-6/n-3 PUFA-balanced diet or one lacking n-3 PUFA. Astrocytes were obtained from the brain cortex of newborn hamsters and cultured in minimum essential medium + 5% fetal calf serum (FCS) supplemented with DHA and/or AA for 10 days. The astrocytes cultured in medium + FCS had low n-3 PUFA contents, comparable to those of brain tissue from hamsters fed an n-3-deficient diet. We have shown that astrocytes grown in medium supplemented with DHA and/or AA, plus alpha-tocopherol to prevent lipid peroxidation, incorporated large amounts of these long-chain PUFA, so that the n-6/n-3 PUFA compositions of the phosphatidylethanolamine and phosphatidylcholine, the two main classes of membrane phospholipids, were greatly altered. Astrocytes cultured in medium plus DHA had a more physiological n-3 status, grew better, and retained their astrocyte phenotype. Thus astrocytes in culture are likely to be physiologically relevant only when provided with adequate DHA. This reliable method of altering membrane phospholipid composition promises to be useful for studying the influence of n-6/n-3 imbalance on astrocyte function.


Asunto(s)
Astrocitos/metabolismo , Membrana Celular/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos Omega-6/metabolismo , Ácidos Grasos Insaturados/metabolismo , Fosfolípidos/metabolismo , Triglicéridos/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Western Blotting , Química Encefálica , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Cricetinae , ADN/metabolismo , Grasas Insaturadas en la Dieta/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Ácidos Grasos Omega-3 , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Factores de Tiempo , alfa-Tocoferol/farmacología
17.
Reprod Nutr Dev ; 44(6): 509-38, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15762297

RESUMEN

Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are the major polyunsaturated fatty acids in the membranes of brain and retinal cells. Animals specifically deficient in dietary n-3 fatty acids have low DHA content in their membranes, reduced visual acuity and impaired learning ability. Studies on bottle-fed human infants have shown that adding DHA and AA to milk replacer-formulas can bring their concentrations in the infant blood lipids to values as high as those produced by breast-feeding and significantly improves mental development and maturation of visual function. In older subjects, diverse neuropsychiatric and neurodegenerative diseases have been associated to decreased blood levels of n-3 PUFA. Low intakes of fish or of n-3 PUFA in populations have been associated with increased risks of depression and Alzheimer disease, and n-3 PUFA, especially eicosapentaenoic acid (EPA, 20:5n-3), have shown efficacy as adjunctive treatment - and in some cases as the only treatment--in several psychiatric disorders. The mechanisms by which polyunsaturated fatty acids have an impact on neuronal functions will be reviewed: the modulation of membrane biophysical properties, regulation of neurotransmitter release, synthesis of biologically active oxygenated derivatives, and nuclear receptor-mediated transcription of genes responsive to fatty acids or to their derivatives.


Asunto(s)
Sistema Nervioso Central/fisiología , Grasas Insaturadas en la Dieta/metabolismo , Ácidos Grasos Insaturados/fisiología , Agudeza Visual/efectos de los fármacos , Adolescente , Adulto , Anciano , Animales , Ácido Araquidónico/administración & dosificación , Ácido Araquidónico/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiología , Sistema Nervioso Central/metabolismo , Niño , Preescolar , Grasas Insaturadas en la Dieta/administración & dosificación , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/administración & dosificación , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/fisiología , Ácidos Grasos Insaturados/administración & dosificación , Ácidos Grasos Insaturados/metabolismo , Femenino , Alimentos Fortificados , Humanos , Lactante , Fórmulas Infantiles/química , Fórmulas Infantiles/normas , Recién Nacido , Masculino , Persona de Mediana Edad , Leche Humana/química , Leche Humana/fisiología , Necesidades Nutricionales , Embarazo , Agudeza Visual/fisiología
18.
Am J Clin Nutr ; 78(4): 702-10, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14522727

RESUMEN

BACKGROUND: Functional maturation of nervous tissues depends on membrane accretion of docosahexaenoic acid (DHA). Animal studies have shown that incorporation of dietary DHA into membrane phospholipids is dose dependent. The molecular effects of DHA are commonly studied in cultured cells, but questions remain about the physiologic connection between animal and cell models. OBJECTIVE: We developed a linear model for comparing the responses of rat nervous tissues to dietary DHA with the responses of human cell lines to DHA in medium. DESIGN: Rats were rendered chronically deficient in n-3 fatty acids by being reared on a peanut oil diet. DHA status was replenished in the F2 generation by using increasing supplements of a microalgal oil. Human retinoblastoma and neuroblastoma cells were dosed with unesterified DHA. DHA accumulation into phospholipids was defined by the plateau of the dose-response curve (DHA(max)) and by the supplement required to produce one-half the DHA(max) (DHA(50)). RESULTS: The DHA(max) values for 4 brain regions and 2 neuroblastoma lines were similar, and the value for the retinoblastoma line was similar to the retinal value. Expressing the DHA input as micro mol/10 g diet and as micro mol/L medium resulted in similar values for the ratio of DHA(max) to DHA(50) in the 4 brain regions and the 3 cell lines. The DHA(max)-DHA(50) ratios in the ethanolamine phosphoglyceride and phosphatidylcholine fractions in retinal phospholipids were 6 and 10 times, respectively, those in the brain and cultured cells. CONCLUSIONS: The dose-dependent responses of cells and the brain to DHA supplements can be compared by using DHA(max)-DHA(50) ratios. We propose a counting frame that allows the comparison of the dose responses of the brain and cells to exogenous DHA.


Asunto(s)
Ácidos Docosahexaenoicos/metabolismo , Modelos Lineales , Membranas/metabolismo , Tejido Nervioso/metabolismo , Fosfolípidos/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Ácidos Docosahexaenoicos/farmacología , Femenino , Humanos , Neuroblastoma/metabolismo , Ratas , Ratas Wistar , Retinoblastoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA