Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Environ Sci Technol ; 57(49): 20881-20892, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38019567

RESUMEN

The co-occurrence of uranyl and arsenate in contaminated water caused by natural processes and mining is a concern for impacted communities, including in Native American lands in the U.S. Southwest. We investigated the simultaneous removal of aqueous uranyl and arsenate after the reaction with limestone and precipitated hydroxyapatite (HAp, Ca10(PO4)6(OH)2). In benchtop experiments with an initial pH of 3.0 and initial concentrations of 1 mM U and As, uranyl and arsenate coprecipitated in the presence of 1 g L-1 limestone. However, related experiments initiated under circumneutral pH conditions showed that uranyl and arsenate remained soluble. Upon addition of 1 mM PO43- and 3 mM Ca2+ in solution (initial concentration of 0.05 mM U and As) resulted in the rapid removal of over 97% of U via Ca-U-P precipitation. In experiments with 2 mM PO43- and 10 mM Ca2+ at pH rising from 7.0 to 11.0, aqueous concentrations of As decreased (between 30 and 98%) circa pH 9. HAp precipitation in solids was confirmed by powder X-ray diffraction and scanning electron microscopy/energy dispersive X-ray. Electron microprobe analysis indicated U was coprecipitated with Ca and P, while As was mainly immobilized through HAp adsorption. The results indicate that natural materials, such as HAp and limestone, can effectively remove uranyl and arsenate mixtures.


Asunto(s)
Arseniatos , Uranio , Carbonato de Calcio , Concentración de Iones de Hidrógeno , Adsorción , Agua
2.
Plants (Basel) ; 11(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35956547

RESUMEN

The objective of this study was to determine uranium (U) and other metal(loid) concentrations (As, Cd, Cs, Pb, Mo, Se, Th, and V) in eight species of plants that are commonly used for medicinal purposes on Diné (Navajo) lands in northwestern New Mexico. The study setting was a prime target for U mining, where more than 500 unreclaimed abandoned U mines and structures remain. The plants were located within 3.2 km of abandoned U mines and structures. Plant biota samples (N = 32) and corresponding soil sources were collected. The samples were analyzed using Inductively Coupled Plasma−Mass Spectrometry. In general, the study findings showed that metal(loid)s were concentrated greatest in soil > root > aboveground plant parts, respectively. Several medicinal plant samples were found to exceed the World Health Organization Raw Medicinal Plant Permissible Level for As and Cd; however, using the calculated human intake data, Reference Dietary Intakes, Recommended Dietary Allowances, and tolerable Upper Limits, the levels were not exceeded for those with established food intake or ingestion guidelines. There does not appear to be a dietary food rise of metal(loid) ingestion based solely on the eight medicinal plants examined. Food intake recommendations informed by research are needed for those who may be more sensitive to metal(loid) exposure. Further research is needed to identify research gaps and continued surveillance and monitoring are recommended for mining-impacted communities.

3.
Environ Sci Technol ; 55(23): 16246-16256, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34797046

RESUMEN

We investigated interfacial reactions of U(VI) in the presence of Suwannee River natural organic matter (NOM) at acidic and neutral pH. Laboratory batch experiments show that the adsorption and precipitation of U(VI) in the presence of NOM occur at pH 2 and pH 4, while the aqueous complexation of U by dissolved organic matter is favored at pH 7, preventing its precipitation. Spectroscopic analyses indicate that U(VI) is mainly adsorbed to the particulate organic matter at pH 4. However, U(VI)-bearing ultrafine to nanocrystalline solids were identified at pH 4 by electron microscopy. This study shows the promotion of U(VI) precipitation by NOM at low pH which may be relevant to the formation of mineralized deposits, radioactive waste repositories, wetlands, and other U- and organic-rich environmental systems.


Asunto(s)
Residuos Radiactivos , Uranio , Adsorción , Materia Orgánica Disuelta , Concentración de Iones de Hidrógeno , Uranio/análisis
4.
Environ Sci Technol ; 55(14): 9949-9957, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34235927

RESUMEN

Particulate matter (PM) presents an environmental health risk for communities residing close to uranium (U) mine sites. However, the role of the particulate form of U on its cellular toxicity is still poorly understood. Here, we investigated the cellular uptake and toxicity of C-rich U-bearing particles as a model organic particulate containing uranyl citrate over a range of environmentally relevant concentrations of U (0-445 µM). The cytotoxicity of C-rich U-bearing particles in human epithelial cells (A549) was U-dose-dependent. No cytotoxic effects were detected with soluble U doses. Carbon-rich U-bearing particles with a wide size distribution (<10 µm) presented 2.7 times higher U uptake into cells than the particles with a narrow size distribution (<1 µm) at 100 µM U concentration. TEM-EDS analysis identified the intracellular translocation of clusters of C-rich U-bearing particles. The accumulation of C-rich U-bearing particles induced DNA damage and cytotoxicity as indicated by the increased phosphorylation of the histone H2AX and cell death, respectively. These findings reveal the toxicity of the particulate form of U under environmentally relevant heterogeneous size distributions. Our study opens new avenues for future investigations on the health impacts resulting from environmental exposures to the particulate form of U near mine sites.


Asunto(s)
Uranio , Carbono , Carbón Mineral , Polvo/análisis , Humanos , Material Particulado/análisis , Material Particulado/toxicidad , Uranio/análisis , Uranio/toxicidad
5.
Environ Sci Process Impacts ; 23(1): 73-85, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33325952

RESUMEN

We investigated the mechanisms of uranium (U) uptake by Tamarix (salt cedars) growing along the Rio Paguate, which flows throughout the Jackpile mine near Pueblo de Laguna, New Mexico. Tamarix were selected for this study due to the detection of U in the roots and shoots of field collected plants (0.6-58.9 mg kg-1), presenting an average bioconcentration factor greater than 1. Synchrotron-based micro X-ray fluorescence analyses of plant roots collected from the field indicate that the accumulation of U occurs in the cortex of the root. The mechanisms for U accumulation in the roots of Tamarix were further investigated in controlled-laboratory experiments where living roots of field plants were macerated for 24 h or 2 weeks in a solution containing 100 µM U. The U concentration in the solution decreased 36-59% after 24 h, and 49-65% in two weeks. Microscopic and spectroscopic analyses detected U precipitation in the root cell walls near the xylems of the roots, confirming the initial results from the field samples. High-resolution TEM was used to study the U fate inside the root cells, and needle-like U-P nanocrystals, with diameter <7 nm, were found entrapped inside vacuoles in cells. EXAFS shell-by-shell fitting suggest that U is associated with carbon functional groups. The preferable binding of U to the root cell walls may explain the U retention in the roots of Tamarix, followed by U-P crystal precipitation, and pinocytotic active transport and cellular entrapment. This process resulted in a limited translocation of U to the shoots in Tamarix plants. This study contributes to better understanding of the physicochemical mechanisms affecting the U uptake and accumulation by plants growing near contaminated sites.


Asunto(s)
Nanopartículas , Tamaricaceae , Uranio , New Mexico , Fósforo , Raíces de Plantas/química , Uranio/análisis
6.
Toxicol Appl Pharmacol ; 403: 115155, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32710956

RESUMEN

Human exposures to environmental metals, including uranium (U) and arsenic (As) are a global public health concern. Chronic exposures to U and As are linked to many adverse health effects including, immune suppression and autoimmunity. The gastrointestinal (GI) tract is home to many immune cells vital in the maintenance of systemic immune health. However, very little is known about the immunotoxicity of U and As at this site. The present study examined the burden of U and As exposure in the GI tract as well as the resultant immunotoxicity to intraepithelial lymphocytes (IELs) and innate immune cells of the small intestine following chronic drinking water exposures of male and female mice to U (in the form of uranyl acetate, UA) and As (in the form of sodium arsenite, As3+). Exposure to U or As3+ resulted in high levels of U or As in the GI tract of male and female mice, respectively. A reduction of small intestinal CD4+ IELs (TCRαß+, CD8αα+) was found following As3+ exposure, whereas U produced widespread suppression of CD4- IEL subsets (TCRαß+ and TCRγδ+). Evaluation of innate immune cell subsets in the small intestinal lamina propria revealed a decrease in mature macrophages, along with a corresponding increase in immature/proinflammatory macrophages following As3+ exposures. These data show that exposures to two prevalent environmental contaminants, U and As produce significant immunotoxicity in the GI tract. Collectively, these findings provide a critical framework for understanding the underlying immune health issues reported in human populations chronically exposed to environmental metals.


Asunto(s)
Arsénico/toxicidad , Inmunidad Innata/efectos de los fármacos , Intestino Delgado/citología , Uranio/toxicidad , Administración Oral , Animales , Agua Potable , Femenino , Intestino Delgado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Factores Sexuales
7.
Environ Sci Technol ; 54(7): 3979-3987, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32176846

RESUMEN

Natural or anthropogenic processes can increase the concentration of uranium (U) and arsenic (As) above the maximum contaminant levels in water sources. Bicarbonate and calcium (Ca) can have major impacts on U speciation and can affect the reactivity between U and As. We therefore investigated the reactivity of aqueous U and As mixtures with bicarbonate and Ca for acidic and neutral pH conditions. In experiments performed with 1 mM U and As mixtures, 10 mM Ca, and without added bicarbonate (pCO2 = 3.5), aqueous U decreased to <0.25 mM at pH 3 and 7. Aqueous As decreased the most at pH 3 (∼0.125 mM). Experiments initiated with 0.005 mM As and U showed similar trends. X-ray spectroscopy (i.e., XAS and EDX) and diffraction indicated that U-As-Ca- and U-Ca-bearing solids resemble uranospinite [Ca(UO2)2(AsO4)2·10H2O] and becquerelite [Ca(UO2)6O4(OH)6·8(H2O)]. These findings suggest that U-As-Ca-bearing solids formed in mixed solutions are stable at pH 3. However, the dissolution of U-As-Ca and U-Ca-bearing solids at pH 7 was observed in reactors containing 10 mM bicarbonate and Ca, suggesting a kinetic reaction of aqueous uranyl-calcium-carbonate complexation. Our study provides new insights regarding U and As mobilization for risk assessment and remediation strategies.


Asunto(s)
Arsénico , Uranio , Bicarbonatos , Calcio , Concentración de Iones de Hidrógeno
8.
Artículo en Inglés | MEDLINE | ID: mdl-31323819

RESUMEN

More than 500 unreclaimed mines and associated waste sites exist on the Navajo Nation reservation as a result of uranium (U) mining from the 1940s through the 1980s. For this study, the impact of U-mine waste on a common, locally grown crop food was examined. The goal of this site-specific study was to determine metal(loid) concentration levels of arsenic (As), cadmium (Cd), cesium (Cs), molybdenum (Mo), lead (Pb), thorium (Th), U, vanadium (V) and selenium (Se) in Cucurbita pepo Linnaeus (squash), irrigation water, and soil using inductively coupled plasma-mass spectrometry. The concentrations of metal(loid)s were greatest in roots > leaves > edible fruit (p < 0.05), respectively. There were significant differences between metal(loid)s in squash crop plot usage (<5 years versus >30 years) for V (p = 0.001), As (p < 0.001), U (p = 0.002), Cs (p = 0.012), Th (p = 0.040), Mo (p = 0.047), and Cd (p = 0.042). Lead and Cd crop irrigation water concentrations exceeded the United States Environmental Protection Agency (USEPA) Maximum Contaminant Levels for drinking water for those metals. Edible squash concentration levels were 0.116 mg/kg of As, 0.248 mg/kg of Pb, 0.020 mg/kg of Cd, and 0.006 mg/kg of U. Calculated human ingestion of edible squash did not exceed Provisional Tolerable Weekly Intake or Tolerable Upper Limit levels from intake based solely on squash consumption. There does not appear to be a food-ingestion risk from metal(loid)s solely from consumption of squash. Safer access and emphasis on consuming regulated water was highlighted. Food intake recommendations were provided. Continued monitoring, surveillance, and further research are recommended.


Asunto(s)
Cucurbita/química , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Adulto , Anciano , Anciano de 80 o más Años , Arsénico/análisis , Agua Potable/normas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Minería , New Mexico , Selenio/análisis , Suelo , Estados Unidos , United States Environmental Protection Agency , Uranio/análisis
9.
Environ Sci Technol ; 53(10): 5758-5767, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30998849

RESUMEN

We investigated the functional group chemistry of natural organic matter (NOM) associated with both U(IV) and U(VI) in solids from mineralized deposits exposed to oxidizing conditions from the Jackpile Mine, Laguna Pueblo, NM. The uranium (U) content in unreacted samples was 0.44-2.6% by weight determined by X-ray fluorescence. In spite of prolonged exposure to ambient oxidizing conditions, ≈49% of U(IV) and ≈51% of U(VI) were identified on U LIII edge extended X-ray absorption fine structure spectra. Loss on ignition and thermogravimetric analyses identified from 13% to 44% of NOM in the samples. Carbonyl, phenolic, and carboxylic functional groups in the unreacted samples were identified by fitting of high-resolution X-ray photoelectron spectroscopy (XPS) C 1s and O 1s spectra. Peaks corresponding to phenolic and carbonyl functional groups had intensities higher than those corresponding to carboxylic groups in samples from the supernatant from batch extractions conducted at pH 13, 7, and 2. U(IV) and U(VI) species were detected in the supernatant after batch extractions conducted under oxidizing conditions by fitting of high-resolution XPS U 4f spectra. The outcomes from this study highlight the importance of the influence of pH on the organic functional group chemistry and U speciation in mineralized deposits.


Asunto(s)
Uranio , New Mexico , Oxidación-Reducción , Espectroscopía de Fotoelectrones
10.
Environ Sci Technol ; 52(22): 13089-13098, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30412391

RESUMEN

We integrated field measurements, hydroponic experiments, microscopy, and spectroscopy to investigate the effect of Ca(II) on dissolved U(VI) uptake by plants in 1 mM HCO3- solutions at circumneutral pH. The accumulation of U in plants (3.1-21.3 mg kg-1) from the stream bank of the Rio Paguate, Jackpile Mine, New Mexico served as a motivation for this study. Brassica juncea was the model plant used for the laboratory experiments conducted over a range of U (30-700 µg L-1) and Ca (0-240 mg L-1) concentrations. The initial U uptake followed pseudo-second-order kinetics. The initial U uptake rate ( V0) ranged from 4.4 to 62 µg g-1 h-1 in experiments with no added Ca and from 0.73 to 2.07 µg g-1 h-1 in experiments with 12 mg L-1 Ca. No measurable U uptake over time was detected for experiments with 240 mg L-1 Ca. Ternary Ca-U-CO3 complexes may affect the decrease in U bioavailability observed in this study. Elemental X-ray mapping using scanning transmission electron microscopy-energy-dispersive spectrometry detected U-P-bearing precipitates within root cell walls in water free of Ca. These results suggest that root interactions with Ca and carbonate in solution affect the bioavailability of U in plants. This study contributes relevant information to applications related to U transport and remediation of contaminated sites.


Asunto(s)
Uranio , Disponibilidad Biológica , Calcio , Concentración de Iones de Hidrógeno , New Mexico , Raíces de Plantas
11.
PLoS One ; 13(10): e0205211, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356336

RESUMEN

High levels of uranium (U) exist in soil, water, and air in the Southwestern United States due, in part, to waste generated from more than 160,000 abandoned hard rock mines located in this region. As a result, many people living in this region are chronically exposed to U at levels that have been linked to detrimental health outcomes. In an effort to establish a relevant in vivo mouse model for future U immunotoxicity studies, we evaluated the tissue distribution of U in immune organs; blood, bone marrow, spleen, and thymus, as well as femur bones, kidneys, and liver, following a 60-d drinking water exposure to uranyl acetate (UA) in male and female C57BL/6J mice. Following the 60-d exposure, there was low overall tissue retention of U (<0.01%) at both the 5 and the 50 ppm (mg/L) oral concentrations. In both male and female mice, there was limited U accumulation in immune organs. U only accumulated at low concentrations in the blood and bone marrow of male mice (0.6 and 16.8 ng/g, respectively). Consistent with previous reports, the predominant sites of U accumulation were the femur bones (350.1 and 399.0 ng/g, respectively) and kidneys (134.0 and 361.3 ng/g, respectively) of male and female mice. Findings from this study provide critical insights into the distribution and retention of U in lymphoid tissues following chronic drinking water exposure to U. This information will serve as a foundation for immunotoxicological assessments of U, alone and in combination with other metals.


Asunto(s)
Exposición a Riesgos Ambientales , Tejido Linfoide/efectos de la radiación , Compuestos Organometálicos/administración & dosificación , Uranio/toxicidad , Animales , Sangre/efectos de la radiación , Médula Ósea/efectos de la radiación , Ratones , Radiación , Sudoeste de Estados Unidos , Bazo/efectos de la radiación , Timo/efectos de la radiación
12.
J Toxicol Environ Health A ; 81(13): 535-548, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29641933

RESUMEN

More than 500 abandoned uranium (U) mines within the Navajo Nation contribute U, arsenic (As) and other metals to groundwater, soil and potentially air through airborne transport. The adverse cardiovascular health effects attributed to cumulative exposure to these metals remains uncertain. The aim of this study was to examine whether environmental exposure to these metals may promote or exacerbate the oxidation of low-density lipoprotein (LDL) cholesterol in this Native American population. The correlation of cardiovascular biomarkers (oxidized LDL (oxLDL) and C-reactive protein (CRP)) from a Navajo cohort (n = 252) with mean annual As and U intakes from water and urine metals was estimated using linear regression. Proof-of-concept assays were performed to investigate whether As and U directly oxidize human LDL. Mean annual As intake from water was positively and significantly associated with oxLDL, but not CRP in this study population, while U intake estimates were negatively associated with oxLDL. In an acellular system, As, but not U, directly oxidized the apolipoprotein B-100 component of purified human LDL. Neither metal promoted lipid peroxidation of the LDL particle. Both the population and lab results are consistent with the hypothesis that As promotes oxidation of LDL, a crucial step in vascular inflammation and chronic vascular disease. Conversely, for outcomes related to U, negative associations were observed between U intake and oxLDL, and U only minimally altered human LDL in direct exposure experiments. Only urine U was correlated with CRP, whereas no other metals in water or urine were apparently reliable predictors of this inflammatory marker.


Asunto(s)
Arsénico/orina , Proteína C-Reactiva/metabolismo , Exposición a Riesgos Ambientales , Contaminantes Ambientales/orina , Lipoproteínas LDL/sangre , Uranio/orina , Adulto , Anciano , Biomarcadores/orina , LDL-Colesterol/metabolismo , Estudios Transversales , Femenino , Humanos , Indígenas Norteamericanos , Masculino , Persona de Mediana Edad , New Mexico , Oxidación-Reducción , Medición de Riesgo
13.
Toxicol Sci ; 164(1): 101-114, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29660078

RESUMEN

Exposure to windblown particulate matter (PM) arising from legacy uranium (U) mine sites in the Navajo Nation may pose a human health hazard due to their potentially high metal content, including U and vanadium (V). To assess the toxic impact of PM derived from Claim 28 (a priority U mine) compared with background PM, and consider the putative role of metal species U and V. Two representative sediment samples from Navajo Nation sites (Background PM and Claim 28 PM) were obtained, characterized in terms of chemistry and morphology, and fractioned to the respirable (≤ 10 µm) fraction. Mice were dosed with either PM sample, uranyl acetate, or vanadyl sulfate via aspiration (100 µg), with assessments of pulmonary and vascular toxicity 24 h later. Particulate matter samples were also examined for in vitro effects on cytotoxicity, oxidative stress, phagocytosis, and inflammasome induction. Claim 28 PM10 was highly enriched with U and V and exhibited a unique nanoparticle ultrastructure compared with background PM10. Claim 28 PM10 exhibited enhanced pulmonary and vascular toxicity relative to background PM10. Both U and V exhibited complementary pulmonary inflammatory potential, with U driving a classical inflammatory cytokine profile (elevated interleukin [IL]-1ß, tumor necrosis factor-α, and keratinocyte chemoattractant/human growth-regulated oncogene) while V preferentially induced a different cytokine pattern (elevated IL-5, IL-6, and IL-10). Claim 28 PM10 was more potent than background PM10 in terms of in vitro cytotoxicity, impairment of phagocytosis, and oxidative stress responses. Resuspended PM10 derived from U mine waste exhibit greater cardiopulmonary toxicity than background dusts. Rigorous exposure assessment is needed to gauge the regional health risks imparted by these unremediated sites.


Asunto(s)
Corazón/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Nanopartículas/toxicidad , Material Particulado/toxicidad , Uranio/toxicidad , Compuestos de Vanadio/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Supervivencia Celular/efectos de los fármacos , Citocinas/análisis , Sedimentos Geológicos/química , Humanos , Pulmón/inmunología , Masculino , Ratones Endogámicos C57BL , Minería , Nanopartículas/análisis , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Material Particulado/análisis , Células THP-1 , Uranio/análisis , Compuestos de Vanadio/análisis , Vasodilatación/efectos de los fármacos
14.
Environ Sci Technol ; 51(21): 12385-12393, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29017012

RESUMEN

The reactive transport of uranium (U) and vanadium(V) from abandoned mine wastes collected from the Blue Gap/Tachee Claim-28 mine site in Arizona was investigated by integrating flow-through column experiments with reactive transport modeling, and electron microscopy. The mine wastes were sequentially reacted in flow-through columns at pH 7.9 (10 mM HCO3-) and pH 3.4 (10 mM CH3COOH) to evaluate the effect of environmentally relevant conditions encountered at Blue Gap/Tachee on the release of U and V. The reaction rate constants (km) for the dissolution of uranyl-vanadate (U-V) minerals predominant at Blue Gap/Tachee were obtained from simulations with the reactive transport software, PFLOTRAN. The estimated reaction rate constants were within 1 order of magnitude for pH 7.9 (km = 4.8 × 10-13 mol cm-2 s-1) and pH 3.4 (km = 3.2 × 10-13 mol cm-2 s-1). However, the estimated equilibrium constants (Keq) for U-V bearing minerals were more than 6 orders of magnitude different for reaction at circumneutral pH (Keq = 10-38.65) compared to acidic pH (Keq = 10-44.81). These results coupled with electron microscopy data suggest that the release of U and V is affected by water pH and the crystalline structure of U-V bearing minerals. The findings from this investigation have important implications for risk exposure assessment, remediation, and resource recovery of U and V in locations where U-V-bearing minerals are abundant.


Asunto(s)
Minería , Uranio , Arizona , Minerales , Vanadio , Eliminación de Residuos Líquidos
15.
Environ Sci Process Impacts ; 19(4): 605-621, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28352908

RESUMEN

The mobility and accumulation of uranium (U) along the Rio Paguate, adjacent to the Jackpile Mine, in Laguna Pueblo, New Mexico was investigated using aqueous chemistry, electron microprobe, X-ray diffraction and spectroscopy analyses. Given that it is not common to identify elevated concentrations of U in surface water sources, the Rio Paguate is a unique site that concerns the Laguna Pueblo community. This study aims to better understand the solid chemistry of abandoned mine waste sediments from the Jackpile Mine and identify key hydrogeological and geochemical processes that affect the fate of U along the Rio Paguate. Solid analyses using X-ray fluorescence determined that sediments located in the Jackpile Mine contain ranges of 320 to 9200 mg kg-1 U. The presence of coffinite, a U(iv)-bearing mineral, was identified by X-ray diffraction analyses in abandoned mine waste solids exposed to several decades of weathering and oxidation. The dissolution of these U-bearing minerals from abandoned mine wastes could contribute to U mobility during rain events. The U concentration in surface waters sampled closest to mine wastes are highest during the southwestern monsoon season. Samples collected from September 2014 to August 2016 showed higher U concentrations in surface water adjacent to the Jackpile Mine (35.3 to 772 µg L-1) compared with those at a wetland 4.5 kilometers downstream of the mine (5.77 to 110 µg L-1). Sediments co-located in the stream bed and bank along the reach between the mine and wetland had low U concentrations (range 1-5 mg kg-1) compared to concentrations in wetland sediments with higher organic matter (14-15%) and U concentrations (2-21 mg kg-1). Approximately 10% of the total U in wetland sediments was amenable to complexation with 1 mM sodium bicarbonate in batch experiments; a decrease of U concentration in solution was observed over time in these experiments likely due to re-association with sediments in the reactor. The findings from this study provide new insights about how hydrologic events may affect the reactivity of U present in mine waste solids exposed to surface oxidizing conditions, and the influence of organic-rich sediments on U accumulation in the Rio Paguate.


Asunto(s)
Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Residuos Industriales/análisis , Minería , Uranio/análisis , Humedales , Monitoreo del Ambiente , New Mexico , Uranio/química , Difracción de Rayos X
16.
J Expo Sci Environ Epidemiol ; 27(4): 365-371, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28120833

RESUMEN

Members of the Navajo Nation, who possess a high prevalence of cardiometabolic disease, reside near hundreds of local abandoned uranium mines (AUM), which contribute uranium, arsenic and other metals to the soil, water and air. We recently reported that hypertension is associated with mine waste exposures in this population. Inflammation is a major player in the development of numerous vascular ailments. Our previous work establishing that specific transcriptional responses of cultured endothelial cells treated with human serum can reveal relative circulating inflammatory potential in a manner responsive to pollutant exposures, providing a model to assess responses associated with exposure to these waste materials in this population. To investigate a potential link between exposures to AUM and serum inflammatory potential in affected communities, primary human coronary artery endothelial cells were treated for 4 h with serum provided by Navajo study participants (n=145). Endothelial transcriptional responses of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and chemokine ligand 2 (CCL2) were measured. These transcriptional responses were then linked to AUM exposure metrics, including surface area-weighted AUM proximity and estimated oral intake of metals. AUM proximity strongly predicted endothelial transcriptional responses to serum including CCL2, VCAM-1 and ICAM-1 (P<0.0001 for each), whereas annual water intakes of arsenic and uranium did not, even after controlling for all major effect modifiers. Inflammatory potential associated with proximity to AUMs, but not oral intake of specific metals, additionally suggests a role for inhalation exposure as a contributor to cardiovascular disease.


Asunto(s)
Quimiocina CCL2/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Uranio/efectos adversos , Molécula 1 de Adhesión Celular Vascular/metabolismo , Adulto , Anciano , Arsénico/efectos adversos , Arsénico/análisis , Bioensayo , Quimiocina CCL2/sangre , Vasos Coronarios , Agua Potable , Células Endoteliales/metabolismo , Femenino , Sistemas de Información Geográfica , Humanos , Indígenas Norteamericanos , Exposición por Inhalación , Molécula 1 de Adhesión Intercelular/sangre , Entrevistas como Asunto , Masculino , Persona de Mediana Edad , Minería , Análisis de Regresión , Uranio/análisis , Molécula 1 de Adhesión Celular Vascular/sangre
17.
eNeurologicalSci ; 2: 8-13, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29473055

RESUMEN

MPV17-related hepatocerebral mitochondrial DNA depletion syndrome (previously known as Navajo neurohepatopathy) was discovered in children in the Four Corner's region of New Mexico approximately 40 years ago. This disease is associated with a single missense mutation in exon 2 in the MPV17 gene. The syndrome has now been recognized world-wide. We find that huge quantities of neurotoxins were present in archived nervous tissues from such patients. Arsenic was increased 18 ×, cadmium ~ 10 ×, cobalt 2.5 × and manganese 2.3 ×; the largest increase was in mercury content 16,000 × compared to contemporaneous fresh-frozen normal nervous tissues. In the Four Corner's region of NM the life span is reduced compared to other parts of the United States and in our patients with MPV17-NNH the average life span was 5.4 years ± 2.7 (SE) years. We now live in the Anthropocene an epoch characterized by large additions to the biosphere of neurotoxins. The effects of such toxic loads on human health and disease remain to be assessed. We speculate how such high neurotoxin content in tissues, which is likely to increase during the Anthropocene, may have influenced MPV17-NNH and similar phenotypes in different parts of the world. Our results imply that selenium supplementation to the diet in the Four Corner's region of NM might be beneficial to normal people and in the management of patients with MPV17-NNH syndrome.

18.
Environ Sci Technol ; 49(14): 8506-14, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26158204

RESUMEN

The chemical interactions of U and co-occurring metals in abandoned mine wastes in a Native American community in northeastern Arizona were investigated using spectroscopy, microscopy and aqueous chemistry. The concentrations of U (67-169 µg L(-1)) in spring water samples exceed the EPA maximum contaminant limit of 30 µg L(-1). Elevated U (6,614 mg kg(-1)), V (15,814 mg kg(-1)), and As (40 mg kg(-1)) concentrations were detected in mine waste solids. Spectroscopy (XPS and XANES) solid analyses identified U (VI), As (-I and III) and Fe (II, III). Linear correlations for the release of U vs V and As vs Fe were observed for batch experiments when reacting mine waste solids with 10 mM ascorbic acid (∼pH 3.8) after 264 h. The release of U, V, As, and Fe was at least 4-fold lower after reaction with 10 mM bicarbonate (∼pH 8.3). These results suggest that U-V mineral phases similar to carnotite [K2(UO2)2V2O8] and As-Fe-bearing phases control the availability of U and As in these abandoned mine wastes. Elevated concentrations of metals are of concern due to human exposure pathways and exposure of livestock currently ingesting water in the area. This study contributes to understanding the occurrence and mobility of metals in communities located close to abandoned mine waste sites.


Asunto(s)
Residuos Industriales/análisis , Metales/análisis , Minería , Uranio/análisis , Arizona , Ácido Ascórbico/química , Monitoreo del Ambiente/métodos , Humanos , Indígenas Norteamericanos , Hierro/análisis , Espectroscopía de Fotoelectrones , Residuos Sólidos , Uranio/química , Vanadio/análisis , Vanadio/química , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA